BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 15604936)

  • 1. The accuracy of interceptive action in time and space.
    Tresilian JR
    Exerc Sport Sci Rev; 2004 Oct; 32(4):167-73. PubMed ID: 15604936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Constraints on the spatiotemporal accuracy of interceptive action: effects of target size on hitting a moving target.
    Tresilian JR; Plooy A; Carroll TJ
    Exp Brain Res; 2004 Apr; 155(4):509-26. PubMed ID: 14999437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intercepting a moving target: effects of temporal precision constraints and movement amplitude.
    Tresilian JR; Lonergan A
    Exp Brain Res; 2002 Jan; 142(2):193-207. PubMed ID: 11807574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systematic changes in the duration and precision of interception in response to variation of amplitude and effector size.
    Tresilian JR; Plooy A
    Exp Brain Res; 2006 Jun; 171(4):421-35. PubMed ID: 16307234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On-line vs. off-line utilization of peripheral visual afferent information to ensure spatial accuracy of goal-directed movements.
    Bédard P; Proteau L
    Exp Brain Res; 2004 Sep; 158(1):75-85. PubMed ID: 15029468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of interceptive actions is based on expectancy of time to target arrival.
    de Azevedo Neto RM; Teixeira LA
    Exp Brain Res; 2009 Nov; 199(2):135-43. PubMed ID: 19705111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hitting moving targets: effects of target speed and dimensions on movement time.
    Brouwer AM; Smeets JB; Brenner E
    Exp Brain Res; 2005 Aug; 165(1):28-36. PubMed ID: 15868174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sources of variability in interceptive movements.
    Brenner E; Smeets JB
    Exp Brain Res; 2009 May; 195(1):117-33. PubMed ID: 19283369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temporal precision of interceptive action: differential effects of target size and speed.
    Tresilian R; Oliver J; Carroll J
    Exp Brain Res; 2003 Feb; 148(4):425-38. PubMed ID: 12582826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The impact of task-constraints on the planning and control of interceptive hitting movements.
    Caljouw SR; van der Kamp J; Savelsbergh GJ
    Neurosci Lett; 2006 Jan; 392(1-2):84-9. PubMed ID: 16229948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How active gaze informs the hand in sequential pointing movements.
    Wilmut K; Wann JP; Brown JH
    Exp Brain Res; 2006 Nov; 175(4):654-66. PubMed ID: 16794847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visuomotor transformation for interception: catching while fixating.
    Dessing JC; Oostwoud Wijdenes L; Peper CE; Beek PJ
    Exp Brain Res; 2009 Jul; 196(4):511-27. PubMed ID: 19543722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How moving backgrounds influence interception.
    Brenner E; Smeets JB
    PLoS One; 2015; 10(3):e0119903. PubMed ID: 25767873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How efficient are central mechanisms for the learning and retention of coincident timing actions?
    Fleury M; Bard C; Teasdale N; Michaud D; Lamarre Y
    Neuropsychologia; 1999 Jun; 37(6):723-30. PubMed ID: 10390034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A dynamical neural network for hitting an approaching object.
    Dessing JC; Caljouw SR; Peper PE; Beek PJ
    Biol Cybern; 2004 Dec; 91(6):377-87. PubMed ID: 15599591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hitting moving objects. The dependency of hand velocity on the speed of the target.
    Brouwer AM; Brenner E; Smeets JB
    Exp Brain Res; 2000 Jul; 133(2):242-8. PubMed ID: 10968225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlling reaching movements with predictable and unpredictable target motion in 10-year-old children and adults.
    Daum MM; Huber S; Krist H
    Exp Brain Res; 2007 Mar; 177(4):483-92. PubMed ID: 17006685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Saccadic interception of a moving visual target after a spatiotemporal perturbation.
    Fleuriet J; Goffart L
    J Neurosci; 2012 Jan; 32(2):452-61. PubMed ID: 22238081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quickly tapping targets that are flashed during smooth pursuit reveals perceptual mislocalisations.
    Rotman G; Brenner E; Smeets JB
    Exp Brain Res; 2004 Jun; 156(4):409-14. PubMed ID: 14968273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prospective versus predictive control in timing of hitting a falling ball.
    Katsumata H; Russell DM
    Exp Brain Res; 2012 Feb; 216(4):499-514. PubMed ID: 22120106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.