BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

428 related articles for article (PubMed ID: 15605174)

  • 1. Glucosylation of the saffron apocarotenoid crocetin by a glucosyltransferase isolated from Crocus sativus stigmas.
    Moraga AR; Nohales PF; Pérez JA; Gómez-Gómez L
    Planta; 2004 Oct; 219(6):955-66. PubMed ID: 15605174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cloning and characterization of a glucosyltransferase from Crocus sativus stigmas involved in flavonoid glucosylation.
    Moraga AR; Mozos AT; Ahrazem O; Gómez-Gómez L
    BMC Plant Biol; 2009 Aug; 9():109. PubMed ID: 19695093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The carotenoid cleavage dioxygenase CCD2 catalysing the synthesis of crocetin in spring crocuses and saffron is a plastidial enzyme.
    Ahrazem O; Rubio-Moraga A; Berman J; Capell T; Christou P; Zhu C; Gómez-Gómez L
    New Phytol; 2016 Jan; 209(2):650-63. PubMed ID: 26377696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A New Glycosyltransferase Enzyme from Family 91, UGT91P3, Is Responsible for the Final Glucosylation Step of Crocins in Saffron (
    López-Jimenez AJ; Frusciante S; Niza E; Ahrazem O; Rubio-Moraga Á; Diretto G; Gómez-Gómez L
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implications of carotenoid biosynthetic genes in apocarotenoid formation during the stigma development of Crocus sativus and its closer relatives.
    Castillo R; Fernández JA; Gómez-Gómez L
    Plant Physiol; 2005 Oct; 139(2):674-89. PubMed ID: 16183835
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crocins with high levels of sugar conjugation contribute to the yellow colours of early-spring flowering crocus tepals.
    Rubio Moraga A; Ahrazem O; Rambla JL; Granell A; Gómez Gómez L
    PLoS One; 2013; 8(9):e71946. PubMed ID: 24058441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. UGT709G1: a novel uridine diphosphate glycosyltransferase involved in the biosynthesis of picrocrocin, the precursor of safranal in saffron (Crocus sativus).
    Diretto G; Ahrazem O; Rubio-Moraga Á; Fiore A; Sevi F; Argandoña J; Gómez-Gómez L
    New Phytol; 2019 Oct; 224(2):725-740. PubMed ID: 31356694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptome analysis reveals novel enzymes for apo-carotenoid biosynthesis in saffron and allows construction of a pathway for crocetin synthesis in yeast.
    Tan H; Chen X; Liang N; Chen R; Chen J; Hu C; Li Q; Li Q; Pei W; Xiao W; Yuan Y; Chen W; Zhang L
    J Exp Bot; 2019 Sep; 70(18):4819-4834. PubMed ID: 31056664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Candidate Enzymes for Saffron Crocin Biosynthesis Are Localized in Multiple Cellular Compartments.
    Demurtas OC; Frusciante S; Ferrante P; Diretto G; Azad NH; Pietrella M; Aprea G; Taddei AR; Romano E; Mi J; Al-Babili S; Frigerio L; Giuliano G
    Plant Physiol; 2018 Jul; 177(3):990-1006. PubMed ID: 29844227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crocetin esters, picrocrocin and its related compounds present in Crocus sativus stigmas and Gardenia jasminoides fruits. Tentative identification of seven new compounds by LC-ESI-MS.
    Carmona M; Zalacain A; Sánchez AM; Novella JL; Alonso GL
    J Agric Food Chem; 2006 Feb; 54(3):973-9. PubMed ID: 16448211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification, cloning and characterization of an ultrapetala transcription factor CsULT1 from Crocus: a novel regulator of apocarotenoid biosynthesis.
    Ashraf N; Jain D; Vishwakarma RA
    BMC Plant Biol; 2015 Feb; 15():25. PubMed ID: 25640597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-species transcriptome analyses for the regulation of crocins biosynthesis in Crocus.
    Ahrazem O; Argandoña J; Fiore A; Rujas A; Rubio-Moraga Á; Castillo R; Gómez-Gómez L
    BMC Genomics; 2019 Apr; 20(1):320. PubMed ID: 31029081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive transcriptome analysis of Crocus sativus for discovery and expression of genes involved in apocarotenoid biosynthesis.
    Baba SA; Mohiuddin T; Basu S; Swarnkar MK; Malik AH; Wani ZA; Abbas N; Singh AK; Ashraf N
    BMC Genomics; 2015 Sep; 16(1):698. PubMed ID: 26370545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional genomics of apocarotenoids in saffron: insights from chemistry, molecular biology and therapeutic applications.
    Dhar MK; Sharma M; Bhat A; Chrungoo NK; Kaul S
    Brief Funct Genomics; 2017 Nov; 16(6):336-347. PubMed ID: 28369196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of Escherichia coli cell factories for crocin biosynthesis.
    Wang W; He P; Zhao D; Ye L; Dai L; Zhang X; Sun Y; Zheng J; Bi C
    Microb Cell Fact; 2019 Jul; 18(1):120. PubMed ID: 31277660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel carotenoid cleavage dioxygenase catalyzes the first dedicated step in saffron crocin biosynthesis.
    Frusciante S; Diretto G; Bruno M; Ferrante P; Pietrella M; Prado-Cabrero A; Rubio-Moraga A; Beyer P; Gomez-Gomez L; Al-Babili S; Giuliano G
    Proc Natl Acad Sci U S A; 2014 Aug; 111(33):12246-51. PubMed ID: 25097262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review of the chemistry and uses of crocins and crocetin, the carotenoid natural dyes in saffron, with particular emphasis on applications as colorants including their use as biological stains.
    Bathaie SZ; Farajzade A; Hoshyar R
    Biotech Histochem; 2014 Aug; 89(6):401-11. PubMed ID: 24665936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive chemotaxonomic analysis of saffron crocus tepal and stamen samples, as raw materials with potential antidepressant activity.
    Mottaghipisheh J; Mahmoodi Sourestani M; Kiss T; Horváth A; Tóth B; Ayanmanesh M; Khamushi A; Csupor D
    J Pharm Biomed Anal; 2020 May; 184():113183. PubMed ID: 32105944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In-chain neutral hydrocarbon loss from crocin apocarotenoid ester glycosides and the crocetin aglycon (Crocus sativus L.) by ESI-MS(n) (n=2, 3).
    Pittenauer E; Koulakiotis NS; Tsarbopoulos A; Allmaier G
    J Mass Spectrom; 2013 Dec; 48(12):1299-307. PubMed ID: 24338885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increasing the applications of Crocus sativus flowers as natural antioxidants.
    Serrano-Díaz J; Sánchez AM; Maggi L; Martínez-Tomé M; García-Diz L; Murcia MA; Alonso GL
    J Food Sci; 2012 Nov; 77(11):C1162-8. PubMed ID: 23057806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.