These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 15605485)

  • 1. Design of dispersion-compensating fibers based on a dual-concentric-core photonic crystal fiber.
    Gérôme F; Auguste JL; Blondy JM
    Opt Lett; 2004 Dec; 29(23):2725-7. PubMed ID: 15605485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photonic crystal fiber for dispersion compensation.
    Zhao X; Zhou G; Li S; Liu Z; Wei D; Hou Z; Hou L
    Appl Opt; 2008 Oct; 47(28):5190-6. PubMed ID: 18830310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromatic dispersion profile optimization of dual-concentric-core photonic crystal fibers for broadband dispersion compensation.
    Fujisawa T; Saitoh K; Wada K; Koshiba M
    Opt Express; 2006 Jan; 14(2):893-900. PubMed ID: 19503409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Broadband dispersion-compensating photonic crystal fiber.
    Yang S; Zhang Y; He L; Xie S
    Opt Lett; 2006 Oct; 31(19):2830-2. PubMed ID: 16969392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of a broadband highly dispersive pure silica photonic crystal fiber.
    Subbaraman H; Ling T; Jiang Y; Chen MY; Cao P; Chen RT
    Appl Opt; 2007 Jun; 46(16):3263-8. PubMed ID: 17514284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-effective-area dispersion-compensating fiber design based on dual-core microstructure.
    Prabhakar G; Peer A; Rastogi V; Kumar A
    Appl Opt; 2013 Jul; 52(19):4505-9. PubMed ID: 23842244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable dual-core liquid-filled photonic crystal fibers for dispersion compensation.
    Yu CP; Liou JH; Huang SS; Chang HC
    Opt Express; 2008 Mar; 16(7):4443-51. PubMed ID: 18542541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis and optimization of a dual-core dispersion compensation fiber based on a 12-fold photonic quasicrystal structure.
    Matloub S; Hosseini SM; Rostami A
    Appl Opt; 2014 Dec; 53(35):8366-73. PubMed ID: 25608082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Residual dispersion compensation over the S + C + L + U wavelength bands using highly birefringent octagonal photonic crystal fiber.
    Habib MS; Ahmad R; Habib MS; Hasan MI
    Appl Opt; 2014 May; 53(14):3057-62. PubMed ID: 24922026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of microstructured optical fibers for wideband dispersion compensation.
    Poli F; Cucinotta A; Fuochi M; Selleri S; Vincetti L
    J Opt Soc Am A Opt Image Sci Vis; 2003 Oct; 20(10):1958-62. PubMed ID: 14570109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photosensitivity-enabled dispersion controllability for quasi-phase-matching in photonic crystal fibers.
    Zhang L; Luo T; Yue Y; Yu C; Willner AE
    Opt Lett; 2007 Dec; 32(24):3498-500. PubMed ID: 18087521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly birefringent, highly negative dispersion compensating photonic crystal fiber.
    Bala A; Chowdhury KR; Mia MB; Faisal M
    Appl Opt; 2017 Sep; 56(25):7256-7261. PubMed ID: 29047988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and analysis of a broadband dispersion compensating photonic crystal fiber Raman amplifier operating in S-band.
    Varshney SK; Fujisawa T; Saitoh K; Koshiba M
    Opt Express; 2006 Apr; 14(8):3528-40. PubMed ID: 19516499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dispersion properties of dual-core photonic-quasicrystal fiber.
    Kim S; Kee CS
    Opt Express; 2009 Aug; 17(18):15885-90. PubMed ID: 19724587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical study and experimental fabrication of high negative dispersion photonic crystal fiber with large area mode field.
    Yang S; Zhang Y; Peng X; Lu Y; Xie S; Li J; Chen W; Jiang Z; Peng J; Li H
    Opt Express; 2006 Apr; 14(7):3015-23. PubMed ID: 19516441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tellurite glass defect-core spiral photonic crystal fiber with low loss and large negative flattened dispersion over S + C + L + U wavelength bands.
    Hasan MR; Hasan MI; Anower MS
    Appl Opt; 2015 Nov; 54(32):9456-61. PubMed ID: 26560773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and analysis of a dispersion flattened and highly nonlinear photonic crystal fiber with ultralow confinement loss.
    Wang Y; Zhang X; Ren X; Zheng L; Liu X; Huang Y
    Appl Opt; 2010 Jan; 49(3):292-7. PubMed ID: 20090791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of highly nonlinear photonic crystal fibers with flattened chromatic dispersion.
    Li X; Xu Z; Ling W; Liu P
    Appl Opt; 2014 Oct; 53(29):6682-7. PubMed ID: 25322369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design optimization of a dual-core dispersion-compensating fiber with a high figure of merit and a large effective area for dense wavelength-division multiplexed transmission through standard G.655 fibers.
    Pande K; Pal BP
    Appl Opt; 2003 Jul; 42(19):3785-91. PubMed ID: 12868816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual-core photonic crystal fibers for tunable polarization mode dispersion compensation.
    Zografopoulos DC; Vázquez C; Kriezis EE; Yioultsis TV
    Opt Express; 2011 Oct; 19(22):21680-91. PubMed ID: 22109018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.