These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 15605491)

  • 1. Improvement of Shack-Hartmann wave-front sensor measurement for extreme adaptive optics.
    Nicolle M; Fusco T; Rousset G; Michau V
    Opt Lett; 2004 Dec; 29(23):2743-5. PubMed ID: 15605491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Revisiting the comparison between the Shack-Hartmann and the pyramid wavefront sensors via the Fisher information matrix.
    Plantet C; Meimon S; Conan JM; Fusco T
    Opt Express; 2015 Nov; 23(22):28619-33. PubMed ID: 26561131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fundamental performance of transverse wind estimator from Shack-Hartmann wave-front sensor measurements.
    Li Z; Li X
    Opt Express; 2018 Apr; 26(9):11859-11876. PubMed ID: 29716103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hierarchical wave-front sensing.
    Le Roux B; Coyne J; Ragazzoni R
    Appl Opt; 2005 Jan; 44(2):171-7. PubMed ID: 15678767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Centroid gain compensation in Shack-Hartmann adaptive optics systems with natural or laser guide star.
    Veran JP; Herriot G
    J Opt Soc Am A Opt Image Sci Vis; 2000 Aug; 17(8):1430-9. PubMed ID: 10935871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measuring the centroid gain of a Shack-Hartmann quad-cell wavefront sensor by using slope discrepancy.
    van Dam MA
    J Opt Soc Am A Opt Image Sci Vis; 2005 Aug; 22(8):1509-14. PubMed ID: 16134845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measuring seeing with a Shack-Hartmann wave-front sensor during an active-optics experiment.
    Zhang Y; Yang D; Cui X
    Appl Opt; 2004 Feb; 43(4):729-34. PubMed ID: 14960062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wave-front sensing from subdivision of the focal plane with a lenslet array.
    Clare RM; Lane RG
    J Opt Soc Am A Opt Image Sci Vis; 2005 Jan; 22(1):117-25. PubMed ID: 15669622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fundamental performance comparison of a Hartmann and a shearing interferometer wave-front sensor.
    Welsh BM; Ellerbroek BL; Roggemann MC; Pennington TL
    Appl Opt; 1995 Jul; 34(21):4186-95. PubMed ID: 21052244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive optics with four laser guide stars: correction of the cone effect in large telescopes.
    Viard E; Le LM; Hubin N
    Appl Opt; 2002 Jan; 41(1):11-20. PubMed ID: 11900425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pyramid and Shack-Hartmann hybrid wave-front sensor.
    Guthery CE; Hart M
    Opt Lett; 2021 Mar; 46(5):1045-1048. PubMed ID: 33649653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Position and displacement sensing with shack-hartmann wave-front sensors.
    Ares J; Mancebo T; BarĂ¡ S
    Appl Opt; 2000 Apr; 39(10):1511-20. PubMed ID: 18345044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of artificial neural networks for Hartmann-sensor lenslet centroid estimation.
    Montera DA; Welsh BM; Roggemann MC; Ruck DW
    Appl Opt; 1996 Oct; 35(29):5747-57. PubMed ID: 21127584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor.
    Liang J; Grimm B; Goelz S; Bille JF
    J Opt Soc Am A Opt Image Sci Vis; 1994 Jul; 11(7):1949-57. PubMed ID: 8071736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Liquid-crystal Hartmann wave-front scanner.
    Olivier S; Laude V; Huignard JP
    Appl Opt; 2000 Aug; 39(22):3838-46. PubMed ID: 18349960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correction of non-common path aberrations in pyramid wavefront sensors to recover the optimal magnitude gain using a deformable lens.
    Quintavalla M; Bergomi M; Magrin D; Bonora S; Ragazzoni R
    Appl Opt; 2020 Jun; 59(17):5151-5157. PubMed ID: 32543534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shack-Hartmann sensor improvement using optical binning.
    Basden A; Geng D; Guzman D; Morris T; Myers R; Saunter C
    Appl Opt; 2007 Aug; 46(24):6136-41. PubMed ID: 17712378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shack Hartmann wave-front measurement with a large F-number plastic microlens array.
    Yoon GY; Jitsuno T; Nakatsuka M; Nakai S
    Appl Opt; 1996 Jan; 35(1):188-92. PubMed ID: 21068997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wave-front sensing by pseudo-phase-conjugate interferometry.
    Baharav Y; Spektor B; Shamir J; Crowe DG; Rhodes W; Stroud R
    Appl Opt; 1995 Jan; 34(1):108-13. PubMed ID: 20963089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvement in error propagation in the Shack-Hartmann-type zonal wavefront sensors.
    Pathak B; Boruah BR
    J Opt Soc Am A Opt Image Sci Vis; 2017 Dec; 34(12):2194-2202. PubMed ID: 29240094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.