BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 15605714)

  • 1. Interactions of fat globule surface proteins during concentration of whole milk in a pilot-scale multiple-effect evaporator.
    Ye A; Singh H; Taylor MW; Anema SG
    J Dairy Res; 2004 Nov; 71(4):471-9. PubMed ID: 15605714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in the surface protein of the fat globules during homogenization and heat treatment of concentrated milk.
    Ye A; Anema SG; Singh H
    J Dairy Res; 2008 Aug; 75(3):347-53. PubMed ID: 18620615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical changes in bovine milk fat globule membrane caused by heat treatment and homogenization of whole milk.
    Lee SJ; Sherbon JW
    J Dairy Res; 2002 Nov; 69(4):555-67. PubMed ID: 12463693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-pressure-induced interactions between milk fat globule membrane proteins and skim milk proteins in whole milk.
    Ye A; Anema SG; Singh H
    J Dairy Sci; 2004 Dec; 87(12):4013-22. PubMed ID: 15545361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal properties of milk fat, xanthine oxidase, caseins and whey proteins in pulsed electric field-treated bovine whole milk.
    Sharma P; Oey I; Everett DW
    Food Chem; 2016 Sep; 207():34-42. PubMed ID: 27080877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Goat α(s1)-casein genotype affects milk fat globule physicochemical properties and the composition of the milk fat globule membrane.
    Cebo C; Lopez C; Henry C; Beauvallet C; Ménard O; Bevilacqua C; Bouvier F; Caillat H; Martin P
    J Dairy Sci; 2012 Nov; 95(11):6215-29. PubMed ID: 22921619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in bovine milk fat globule membrane proteins caused by heat procedures using a label-free proteomic approach.
    Yang Y; Zheng N; Zhao X; Yang J; Zhang Y; Han R; Qi Y; Zhao S; Li S; Wen F; Guo T; Zang C; Wang J
    Food Res Int; 2018 Nov; 113():1-8. PubMed ID: 30195502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Native vs. damaged milk fat globules: membrane properties affect the viscoelasticity of milk gels.
    Michalski MC; Cariou R; Michel F; Garnier C
    J Dairy Sci; 2002 Oct; 85(10):2451-61. PubMed ID: 12416796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Focus on the supramolecular structure of milk fat in dairy products.
    Lopez C
    Reprod Nutr Dev; 2005; 45(4):497-511. PubMed ID: 16045897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microstructure of fat globules in whole milk after thermosonication treatment.
    Bermúdez-Aguirre D; Mawson R; Barbosa-Cánovas GV
    J Food Sci; 2008 Sep; 73(7):E325-32. PubMed ID: 18803706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of milk processing on the microstructure of the milk fat globule and rennet induced gel observed using confocal laser scanning microscopy.
    Ong L; Dagastine RR; Kentish SE; Gras SL
    J Food Sci; 2010 Apr; 75(3):E135-45. PubMed ID: 20492286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermocalcic aggregation of milk fat globule membrane fragments from acid buttermilk cheese whey.
    Rombaut R; Dewettinck K
    J Dairy Sci; 2007 Jun; 90(6):2665-74. PubMed ID: 17517706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo digestion of bovine milk fat globules: effect of processing and interfacial structural changes. I. Gastric digestion.
    Gallier S; Cui J; Olson TD; Rutherfurd SM; Ye A; Moughan PJ; Singh H
    Food Chem; 2013 Dec; 141(3):3273-81. PubMed ID: 23871087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo digestion of bovine milk fat globules: effect of processing and interfacial structural changes. II. Upper digestive tract digestion.
    Gallier S; Zhu XQ; Rutherfurd SM; Ye A; Moughan PJ; Singh H
    Food Chem; 2013 Dec; 141(3):3215-23. PubMed ID: 23871080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using confocal laser scanning microscopy to probe the milk fat globule membrane and associated proteins.
    Gallier S; Gragson D; Jiménez-Flores R; Everett D
    J Agric Food Chem; 2010 Apr; 58(7):4250-7. PubMed ID: 20218614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteome profile and biological activity of caprine, bovine and human milk fat globules.
    Spertino S; Cipriani V; De Angelis C; Giuffrida MG; Marsano F; Cavaletto M
    Mol Biosyst; 2012 Apr; 8(4):967-74. PubMed ID: 22193558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The adhesion of homogenized fat globules to proteins is increased by milk heat treatment and acidic pH: Quantitative insights provided by AFM force spectroscopy.
    Obeid S; Guyomarc'h F; Tanguy G; Leconte N; Rousseau F; Dolivet A; Leduc A; Wu X; Cauty C; Jan G; Gaucheron F; Lopez C
    Food Res Int; 2020 Mar; 129():108847. PubMed ID: 32036922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Separation of milk fat globules via microfiltration: Effect of diafiltration media and opportunities for stream valorization.
    Jukkola A; Partanen R; Rojas OJ; Heino A
    J Dairy Sci; 2016 Nov; 99(11):8644-8654. PubMed ID: 27638266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of emulsifying properties of milk fat globule membrane materials isolated from different dairy by-products.
    Phan TT; Le TT; Van der Meeren P; Dewettinck K
    J Dairy Sci; 2014; 97(8):4799-810. PubMed ID: 24913653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of industrial cream heat treatments on the protein composition of the milk fat globule membrane.
    Hansen SF; Petrat-Melin B; Rasmusen JT; Larsen LB; Wiking L
    J Dairy Res; 2020 Feb; 87(1):89-93. PubMed ID: 32026791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.