These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 15606085)

  • 1. Native chemical ligation through in situ O to S acyl shift.
    Botti P; Villain M; Manganiello S; Gaertner H
    Org Lett; 2004 Dec; 6(26):4861-4. PubMed ID: 15606085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards biomolecular assembly employing extended native chemical ligation in combination with thioester synthesis using an N-->S acyl shift.
    Ackrill T; Anderson DW; Macmillan D
    Biopolymers; 2010; 94(4):495-503. PubMed ID: 20593460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peptidyl N,N-bis(2-mercaptoethyl)-amides as thioester precursors for native chemical ligation.
    Hou W; Zhang X; Li F; Liu CF
    Org Lett; 2011 Feb; 13(3):386-9. PubMed ID: 21175148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of peptide alkylthioesters using the intramolecular N,S-acyl shift properties of bis(2-sulfanylethyl)amido peptides.
    Dheur J; Ollivier N; Vallin A; Melnyk O
    J Org Chem; 2011 May; 76(9):3194-202. PubMed ID: 21417423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methionine ligation strategy in the biomimetic synthesis of parathyroid hormones.
    Tam JP; Yu Q
    Biopolymers; 1998 Oct; 46(5):319-27. PubMed ID: 9754028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cysteine-derived s-protected oxazolidinones: potential chemical devices for the preparation of peptide thioesters.
    Ohta Y; Itoh S; Shigenaga A; Shintaku S; Fujii N; Otaka A
    Org Lett; 2006 Feb; 8(3):467-70. PubMed ID: 16435861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The chemical ligation of selectively S-acylated cysteine peptides to form native peptides via 5-, 11- and 14-membered cyclic transition states.
    Katritzky AR; Abo-Dya NE; Tala SR; Abdel-Samii ZK
    Org Biomol Chem; 2010 May; 8(10):2316-9. PubMed ID: 20372743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peptide thioester preparation by Fmoc solid phase peptide synthesis for use in native chemical ligation.
    Clippingdale AB; Barrow CJ; Wade JD
    J Pept Sci; 2000 May; 6(5):225-34. PubMed ID: 10823491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of protected peptidyl thioester intermediates for native chemical ligation by Nalpha-9-fluorenylmethoxycarbonyl (Fmoc) chemistry: considerations of side-chain and backbone anchoring strategies, and compatible protection for N-terminal cysteine.
    Gross CM; Lelièvre D; Woodward CK; Barany G
    J Pept Res; 2005 Mar; 65(3):395-410. PubMed ID: 15787970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isopeptide method: development of S-acyl isopeptide method for the synthesis of difficult sequence-containing peptides.
    Yoshiya T; Ito N; Kimura T; Kiso Y
    J Pept Sci; 2008 Nov; 14(11):1203-8. PubMed ID: 18613286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and use of a pseudo-cysteine for native chemical ligation.
    Alves DA; Esser D; Broadbridge RJ; Beevers AP; Chapman CP; Winsor CE; Betley JR
    J Pept Sci; 2003 Apr; 9(4):221-8. PubMed ID: 12725243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of thiazolidine thioester peptides and acceleration of native chemical ligation.
    Dheur J; Ollivier N; Melnyk O
    Org Lett; 2011 Mar; 13(6):1560-3. PubMed ID: 21348452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical ligation of S-scylated cysteine peptides to form native peptides via 5-, 11-, and 14-membered cyclic transition states.
    Katritzky AR; Tala SR; Abo-Dya NE; Ibrahim TS; El-Feky SA; Gyanda K; Pandya KM
    J Org Chem; 2011 Jan; 76(1):85-96. PubMed ID: 21158395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Traceless chemical ligation from S-, O-, and N-acyl isopeptides.
    Panda SS; Hall CD; Oliferenko AA; Katritzky AR
    Acc Chem Res; 2014 Apr; 47(4):1076-87. PubMed ID: 24617996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From protein total synthesis to peptide transamidation and metathesis: playing with the reversibility of N,S-acyl or N,Se-acyl migration reactions.
    Melnyk O; Agouridas V
    Curr Opin Chem Biol; 2014 Oct; 22():137-45. PubMed ID: 25438800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A beta-keto ester as a novel, efficient, and versatile ligand for copper(I)-catalyzed C-N, C-O, and C-S coupling reactions.
    Lv X; Bao W
    J Org Chem; 2007 May; 72(10):3863-7. PubMed ID: 17432916
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein splicing: evidence for an N-O acyl rearrangement as the initial step in the splicing process.
    Shao Y; Xu MQ; Paulus H
    Biochemistry; 1996 Mar; 35(12):3810-5. PubMed ID: 8620003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thiocarbamate-linked peptides by chemoselective peptide ligation.
    Besret S; Ollivier N; Blanpain A; Melnyk O
    J Pept Sci; 2008 Dec; 14(12):1244-50. PubMed ID: 18752254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of peptide thioester formation via N→Se acyl transfer.
    Adams AL; Macmillan D
    J Pept Sci; 2013 Feb; 19(2):65-73. PubMed ID: 23297044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical analysis of the detailed mechanism of native chemical ligation reactions.
    Wang C; Guo QX; Fu Y
    Chem Asian J; 2011 May; 6(5):1241-51. PubMed ID: 21365769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.