These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 15606234)

  • 1. Vibrational molecular quantum computing: basis set independence and theoretical realization of the Deutsch-Jozsa algorithm.
    Tesch CM; de Vivie-Riedle R
    J Chem Phys; 2004 Dec; 121(24):12158-68. PubMed ID: 15606234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Manganese pentacarbonyl bromide as candidate for a molecular qubit system operated in the infrared regime.
    Korff BM; Troppmann U; Kompa KL; de Vivie-Riedle R
    J Chem Phys; 2005 Dec; 123(24):244509. PubMed ID: 16396551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal control simulation of the Deutsch-Jozsa algorithm in a two-dimensional double well coupled to an environment.
    Ndong M; Lauvergnat D; Chapuisat X; Desouter-Lecomte M
    J Chem Phys; 2007 Jun; 126(24):244505. PubMed ID: 17614562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of local and global molecular quantum gates and their implementation prospects.
    Troppmann U; de Vivie-Riedle R
    J Chem Phys; 2005 Apr; 122(15):154105. PubMed ID: 15945623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vibrational computing: simulation of a full adder by optimal control.
    Bomble L; Lauvergnat D; Remacle F; Desouter-Lecomte M
    J Chem Phys; 2008 Feb; 128(6):064110. PubMed ID: 18282031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Implementing logic gates and the Deutsch-Jozsa quantum algorithm by two-dimensional NMR using spin- and transition-selective pulses.
    Mahesh TS; Dorai K; Arvind ; Kumar A
    J Magn Reson; 2001 Jan; 148(1):95-103. PubMed ID: 11133281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implementation of the Deutsch-Jozsa algorithm on an ion-trap quantum computer.
    Gulde S; Riebe M; Lancaster GP; Becher C; Eschner J; Häffner H; Schmidt-Kaler F; Chuang IL; Blatt R
    Nature; 2003 Jan; 421(6918):48-50. PubMed ID: 12511949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase control in the vibrational qubit.
    Zhao M; Babikov D
    J Chem Phys; 2006 Jul; 125(2):24105. PubMed ID: 16848575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of non-adiabatic geometric phase for quantum computing by NMR.
    Das R; Kumar SK; Kumar A
    J Magn Reson; 2005 Dec; 177(2):318-28. PubMed ID: 16182577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Demonstration of controlled-NOT quantum gates on a pair of superconducting quantum bits.
    Plantenberg JH; de Groot PC; Harmans CJ; Mooij JE
    Nature; 2007 Jun; 447(7146):836-9. PubMed ID: 17568742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum computing based on vibrational eigenstates: pulse area theorem analysis.
    Cheng T; Brown A
    J Chem Phys; 2006 Jan; 124(3):034111. PubMed ID: 16438571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accuracy of gates in a quantum computer based on vibrational eigenstates.
    Babikov D
    J Chem Phys; 2004 Oct; 121(16):7577-85. PubMed ID: 15485217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implementation of controlled phase shift gates and Collins version of Deutsch-Jozsa algorithm on a quadrupolar spin-7/2 nucleus using non-adiabatic geometric phases.
    Gopinath T; Kumar A
    J Magn Reson; 2008 Aug; 193(2):168-76. PubMed ID: 18514557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of diatomic molecular properties on binary laser pulse optimizations of quantum gate operations.
    Zaari RR; Brown A
    J Chem Phys; 2011 Jul; 135(4):044317. PubMed ID: 21806129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental implementation of local adiabatic evolution algorithms by an NMR quantum information processor.
    Mitra A; Ghosh A; Das R; Patel A; Kumar A
    J Magn Reson; 2005 Dec; 177(2):285-98. PubMed ID: 16172009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum gate operations using midinfrared binary shaped pulses on the rovibrational states of carbon monoxide.
    Zaari RR; Brown A
    J Chem Phys; 2010 Jan; 132(1):014307. PubMed ID: 20078161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum computation with vibrationally excited molecules.
    Tesch CM; De Vivie-Riedle R
    Phys Rev Lett; 2002 Oct; 89(15):157901. PubMed ID: 12366025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Programmable networks for quantum algorithms.
    Schuch N; Siewert J
    Phys Rev Lett; 2003 Jul; 91(2):027902. PubMed ID: 12906509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental one-way quantum computing.
    Walther P; Resch KJ; Rudolph T; Schenck E; Weinfurter H; Vedral V; Aspelmeyer M; Zeilinger A
    Nature; 2005 Mar; 434(7030):169-76. PubMed ID: 15758991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-speed linear optics quantum computing using active feed-forward.
    Prevedel R; Walther P; Tiefenbacher F; Böhi P; Kaltenbaek R; Jennewein T; Zeilinger A
    Nature; 2007 Jan; 445(7123):65-9. PubMed ID: 17203057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.