BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 15606284)

  • 1. Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays.
    Zou S; Schatz GC
    J Chem Phys; 2004 Dec; 121(24):12606-12. PubMed ID: 15606284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes.
    Zou S; Janel N; Schatz GC
    J Chem Phys; 2004 Jun; 120(23):10871-5. PubMed ID: 15268116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Curve crossing and negative refraction in simulations of near-field coupled metallic nanoparticle arrays.
    Lopata K; Neuhauser D; Baer R
    J Chem Phys; 2007 Oct; 127(15):154714. PubMed ID: 17949198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface-plasmon-assisted electromagnetic wave propagation.
    Yang W; Reed JM; Wang H; Zou S
    Phys Chem Chem Phys; 2010 Oct; 12(39):12647-52. PubMed ID: 20730226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Manipulating the optical properties of pyramidal nanoparticle arrays.
    Henzie J; Shuford KL; Kwak ES; Schatz GC; Odom TW
    J Phys Chem B; 2006 Jul; 110(29):14028-31. PubMed ID: 16854094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electromagnetic interactions in plasmonic nanoparticle arrays.
    Bouhelier A; Bachelot R; Im JS; Wiederrecht GP; Lerondel G; Kostcheev S; Royer P
    J Phys Chem B; 2005 Mar; 109(8):3195-8. PubMed ID: 16851340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment.
    Miller MM; Lazarides AA
    J Phys Chem B; 2005 Nov; 109(46):21556-65. PubMed ID: 16853799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Grating-induced plasmon mode in gold nanoparticle arrays.
    Félidj N; Laurent G; Aubard J; Lévi G; Hohenau A; Krenn JR; Aussenegg FR
    J Chem Phys; 2005 Dec; 123(22):221103. PubMed ID: 16375460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large spectral extinction due to overlap of dipolar and quadrupolar plasmonic modes of metallic nanoparticles in arrays.
    Burrows CP; Barnes WL
    Opt Express; 2010 Feb; 18(3):3187-98. PubMed ID: 20174158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comment on "Silver nanoparticle array structures that produce remarkably narrow plasmon line shapes" [J. Chem. Phys. 120, 10871 (2004)].
    Markel VA
    J Chem Phys; 2005 Mar; 122(9):097101; author reply 097102. PubMed ID: 15836188
    [No Abstract]   [Full Text] [Related]  

  • 12. On the use of plasmonic nanoparticle pairs as a plasmon ruler: the dependence of the near-field dipole plasmon coupling on nanoparticle size and shape.
    Tabor C; Murali R; Mahmoud M; El-Sayed MA
    J Phys Chem A; 2009 Mar; 113(10):1946-53. PubMed ID: 19090688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gold particle interaction in regular arrays probed by surface enhanced Raman scattering.
    Félidj N; Truong SL; Aubard J; Lévi G; Krenn JR; Hohenau A; Leitner A; Aussenegg FR
    J Chem Phys; 2004 Apr; 120(15):7141-6. PubMed ID: 15267619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of size-controlled faceted pentagonal silver nanorods with tunable plasmonic properties and self-assembly of these nanorods.
    Pietrobon B; McEachran M; Kitaev V
    ACS Nano; 2009 Jan; 3(1):21-6. PubMed ID: 19206244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light-induced coherent interactions between silver nanoparticles in two-dimensional arrays.
    Malynych S; Chumanov G
    J Am Chem Soc; 2003 Mar; 125(10):2896-8. PubMed ID: 12617655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical response of ultrafine spherical silver nanoparticles arranged in hexagonal planar arrays studied by the DDA method.
    Portalès H; Pinna N; Pileni MP
    J Phys Chem A; 2009 Apr; 113(16):4094-9. PubMed ID: 19278219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable wavelength-division multiplexing based on metallic nanoparticle arrays.
    Li J; Hu X; Gu Y; Gong Q
    Opt Lett; 2010 Dec; 35(23):4051-3. PubMed ID: 21124609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Narrow plasmon mode in 2D arrays of silver nanoparticles self-assembled on thin silver films.
    Malynych S; Chumanov G
    J Microsc; 2008 Mar; 229(Pt 3):567-74. PubMed ID: 18331512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.