BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 15606313)

  • 1. The effect of model approximations on single-collision distributions of low-energy electrons in liquid water.
    Emfietzoglou D; Nikjoo H
    Radiat Res; 2005 Jan; 163(1):98-111. PubMed ID: 15606313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monte Carlo Electron Track Structure Calculations in Liquid Water Using a New Model Dielectric Response Function.
    Emfietzoglou D; Papamichael G; Nikjoo H
    Radiat Res; 2017 Sep; 188(3):355-368. PubMed ID: 28650774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo simulation of the energy loss of low-energy electrons in liquid water.
    Emfietzoglou D; Karava K; Papamichael G; Moscovitch M
    Phys Med Biol; 2003 Aug; 48(15):2355-71. PubMed ID: 12953903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of low-energy electron track structure in liquid water.
    Wilson WE; Miller JH; Lynch DJ; Lewis RR; Batdorf M
    Radiat Res; 2004 May; 161(5):591-6. PubMed ID: 15161364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Monte Carlo study of absorbed dose distributions in both the vapor and liquid phases of water by intermediate energy electrons based on different condensed-history transport schemes.
    Bousis C; Emfietzoglou D; Hadjidoukas P; Nikjoo H
    Phys Med Biol; 2008 Jul; 53(14):3739-61. PubMed ID: 18574312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inelastic cross sections for low-energy electrons in liquid water: exchange and correlation effects.
    Emfietzoglou D; Kyriakou I; Garcia-Molina R; Abril I; Nikjoo H
    Radiat Res; 2013 Nov; 180(5):499-513. PubMed ID: 24131062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron track simulation using ETMICRO.
    Kim EH
    Radiat Prot Dosimetry; 2006; 122(1-4):53-5. PubMed ID: 17182606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurate electron inelastic cross sections and stopping powers for liquid water over the 0.1-10 keV range based on an improved dielectric description of the Bethe surface.
    Emfietzoglou D; Nikjoo H
    Radiat Res; 2007 Jan; 167(1):110-20. PubMed ID: 17214512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical cross sections for electron collisions in water: structure of electron tracks.
    Champion C
    Phys Med Biol; 2003 Jul; 48(14):2147-68. PubMed ID: 12894976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inelastic scattering of low-energy electrons in liquid water computed from optical-data models of the Bethe surface.
    Emfietzoglou D; Kyriakou I; Abril I; Garcia-Molina R; Nikjoo H
    Int J Radiat Biol; 2012 Jan; 88(1-2):22-8. PubMed ID: 21756061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monte-Carlo calculations of radial dose and restricted-let for protons in water.
    Emfietzoglou D; Karava K; Papamichael G; Moscovitch M
    Radiat Prot Dosimetry; 2004; 110(1-4):871-9. PubMed ID: 15353761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monte Carlo simulation of water radiolysis for low-energy charged particles.
    Uehara S; Nikjoo H
    J Radiat Res; 2006 Mar; 47(1):69-81. PubMed ID: 16571920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron beam transport in heterogeneous slab media from MeV down to eV.
    Yousfi M; Leger J; Loiseau JF; Held B; Eichwald O; Defoort B; Dupillier JM
    Radiat Prot Dosimetry; 2006; 122(1-4):46-52. PubMed ID: 17151011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Semi-empirical inelastic cross sections for electron transport in liquid water.
    Emfietzoglou D
    Radiat Prot Dosimetry; 2002; 99(1-4):39-46. PubMed ID: 12194336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inelastic scattering and stopping power of low-energy electrons (0.01-10 keV) in toluene.
    García G; Blanco F; Grau Carles A; Grau Malonda A
    Appl Radiat Isot; 2004; 60(2-4):481-5. PubMed ID: 14987689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of microdosimetric simulations using PENELOPE and PITS for a 25 keV electron microbeam in water.
    Mainardi E; Donahue RJ; Wilson WE; Blakely EA
    Radiat Res; 2004 Sep; 162(3):326-31. PubMed ID: 15333002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial distributions of inelastic events produced by electrons in gaseous and liquid water.
    Paretzke HG; Turner JE; Hamm RN; Ritchie RH; Wright HA
    Radiat Res; 1991 Aug; 127(2):121-9. PubMed ID: 1946995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Track structure: time evolution from physics to chemistry.
    Dingfelder M
    Radiat Prot Dosimetry; 2006; 122(1-4):16-21. PubMed ID: 17277326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calculation of photon energy deposition kernels and electron dose point kernels in water.
    Mainegra-Hing E; Rogers DW; Kawrakow I
    Med Phys; 2005 Mar; 32(3):685-99. PubMed ID: 15839340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dose-mean lineal energy values for electrons by different Monte Carlo codes: Consequences for estimates of radiation quality in photon beams.
    Lindborg L; Lillhök J; Kyriakou I; Emfietzoglou D
    Med Phys; 2022 Feb; 49(2):1286-1296. PubMed ID: 34905630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.