BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 15606546)

  • 1. Pathogenesis of acute myeloid leukaemia and inv(16)(p13;q22): a paradigm for understanding leukaemogenesis?
    Reilly JT
    Br J Haematol; 2005 Jan; 128(1):18-34. PubMed ID: 15606546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Core-binding factor abnormalities involving chromosome 16 in acute myeloid leukaemia: prognostic and therapeutic implications.
    Panigrahi C; Tikare N; Das PK; Padhi S
    BMJ Case Rep; 2023 Aug; 16(8):. PubMed ID: 37591621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell.
    Bonnet D; Dick JE
    Nat Med; 1997 Jul; 3(7):730-7. PubMed ID: 9212098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FLT3 tyrosine kinase inhibitors in acute myeloid leukemia: clinical implications and limitations.
    Kayser S; Levis MJ
    Leuk Lymphoma; 2014 Feb; 55(2):243-55. PubMed ID: 23631653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular analysis of different FLT3-ITD mutations in acute myeloid leukemia.
    Blau O; Berenstein R; Sindram A; Blau IW
    Leuk Lymphoma; 2013 Jan; 54(1):145-52. PubMed ID: 22721497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diversity of the juxtamembrane and TKD1 mutations (exons 13-15) in the FLT3 gene with regards to mutant load, sequence, length, localization, and correlation with biological data.
    Schnittger S; Bacher U; Haferlach C; Alpermann T; Kern W; Haferlach T
    Genes Chromosomes Cancer; 2012 Oct; 51(10):910-24. PubMed ID: 22674490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular genetics of adult acute myeloid leukemia: prognostic and therapeutic implications.
    Marcucci G; Haferlach T; Döhner H
    J Clin Oncol; 2011 Feb; 29(5):475-86. PubMed ID: 21220609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acute myeloid leukaemia.
    Estey E; Döhner H
    Lancet; 2006 Nov; 368(9550):1894-907. PubMed ID: 17126723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acute Myeloid Leukemia.
    Döhner H; Weisdorf DJ; Bloomfield CD
    N Engl J Med; 2015 Sep; 373(12):1136-52. PubMed ID: 26376137
    [No Abstract]   [Full Text] [Related]  

  • 10. Acute myeloid leukemia: novel mutations and their clinical implications.
    Makkar H; Majhi RK; Goel H; Gupta AK; Chopra A; Tanwar P; Seth R
    Am J Blood Res; 2023; 13(1):12-27. PubMed ID: 36937458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neoplasia-associated Chromosome Translocations Resulting in Gene Truncation.
    Panagopoulos I; Heim S
    Cancer Genomics Proteomics; 2022; 19(6):647-672. PubMed ID: 36316036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional association of NR4A3 downregulation with impaired differentiation in myeloid leukemogenesis.
    Lin SC; Yao CY; Hsu CA; Lin CT; Calkins MJ; Kuo YY; Tang JL; Tien HF; Wu SJ
    Ann Hematol; 2022 Oct; 101(10):2209-2218. PubMed ID: 36040481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptome-Wide Analysis of RNA N
    Fang S; Peng B; Wen Y; Yang J; Wang H; Wang Z; Qian K; Wei Y; Jiao Y; Gao C; Dou L
    Front Genet; 2022; 13():833694. PubMed ID: 35571033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incidental identification of inv(16)(p13.1q22)/
    Quesada AE; Luthra R; Jabbour E; Patel KP; Khoury JD; Tang Z; Alvarez H; Mallampati S; Garcia-Manero G; Montalban-Bravo G; Medeiros LJ; Kanagal-Shamanna R
    Cold Spring Harb Mol Case Stud; 2021 Jun; 7(3):. PubMed ID: 34117074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Etiology of Acute Leukemia: A Review.
    Tebbi CK
    Cancers (Basel); 2021 May; 13(9):. PubMed ID: 34066700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating the Role of Indoleamine 2,3-Dioxygenase in Acute Myeloid Leukemia: A Systematic Review.
    Wells G; Kennedy PT; Dahal LN
    Front Immunol; 2021; 12():651687. PubMed ID: 33777052
    [No Abstract]   [Full Text] [Related]  

  • 17. Supraphysiologic levels of the AML1-ETO isoform AE9a are essential for transformation.
    Link KA; Lin S; Shrestha M; Bowman M; Wunderlich M; Bloomfield CD; Huang G; Mulloy JC
    Proc Natl Acad Sci U S A; 2016 Aug; 113(32):9075-80. PubMed ID: 27457952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The prevalence and clinical profiles of FLT3-ITD, FLT3-TKD, NPM1, C-KIT, DNMT3A, and CEBPA mutations in a cohort of patients with de novo acute myeloid leukemia from southwest China.
    Gou H; Zhou J; Ye Y; Hu X; Shang M; Zhang J; Zhao Z; Peng W; Zhou Y; Zhou Y; Song X; Lu X; Ying B
    Tumour Biol; 2016 Jun; 37(6):7357-70. PubMed ID: 26676635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Class III Receptor Tyrosine Kinases in Acute Leukemia - Biological Functions and Modern Laboratory Analysis.
    Berenstein R
    Biomark Insights; 2015; 10(Suppl 3):1-14. PubMed ID: 26309392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Secondary Adult Acute Myeloid Leukemia: a Review of Our Evolving Understanding of a Complex Disease Process.
    Zeichner SB; Arellano ML
    Curr Treat Options Oncol; 2015 Aug; 16(8):37. PubMed ID: 26143266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.