These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 15606773)

  • 21. Alleviation of glucose repression of maltose metabolism by MIG1 disruption in Saccharomyces cerevisiae.
    Klein CJ; Olsson L; Rønnow B; Mikkelsen JD; Nielsen J
    Appl Environ Microbiol; 1996 Dec; 62(12):4441-9. PubMed ID: 8953715
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vitro characterization of the Mig1 repressor from Saccharomyces cerevisiae reveals evidence for monomeric and higher molecular weight forms.
    Needham PG; Trumbly RJ
    Yeast; 2006 Dec; 23(16):1151-66. PubMed ID: 17133623
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional domains of yeast hexokinase 2.
    Peláez R; Herrero P; Moreno F
    Biochem J; 2010 Nov; 432(1):181-90. PubMed ID: 20815814
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulated nuclear translocation of the Mig1 glucose repressor.
    De Vit MJ; Waddle JA; Johnston M
    Mol Biol Cell; 1997 Aug; 8(8):1603-18. PubMed ID: 9285828
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Silencing MIG1 in Saccharomyces cerevisiae: effects of antisense MIG1 expression and MIG1 gene disruption.
    Olsson L; Larsen ME; Rønnow B; Mikkelsen JD; Nielsen J
    Appl Environ Microbiol; 1997 Jun; 63(6):2366-71. PubMed ID: 9172357
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multiple phosphorylation sites regulate the activity of the repressor Mig1 in
    Ramírez-Zavala B; Betsova D; Schwanfelder S; Krüger I; Mottola A; Krüger T; Kniemeyer O; Brakhage AA; Morschhäuser J
    mSphere; 2023 Dec; 8(6):e0054623. PubMed ID: 38010000
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ESCRT-III protein Snf7 mediates high-level expression of the SUC2 gene via the Rim101 pathway.
    Weiss P; Huppert S; Kölling R
    Eukaryot Cell; 2008 Nov; 7(11):1888-94. PubMed ID: 18806212
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gln3p and Nil1p regulation of invertase activity and SUC2 expression in Saccharomyces cerevisiae.
    Oliveira EM; Mansure JJ; Bon EP
    FEMS Yeast Res; 2005 Apr; 5(6-7):605-9. PubMed ID: 15780659
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fine-Tuning of Energy Levels Regulates
    Persson S; Welkenhuysen N; Shashkova S; Cvijovic M
    Front Physiol; 2020; 11():954. PubMed ID: 32922308
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of low glycolytic activities in gcr1 and gcr2 mutants on the expression of other metabolic pathway genes in Saccharomyces cerevisiae.
    Sasaki H; Uemura H
    Yeast; 2005 Jan; 22(2):111-27. PubMed ID: 15645478
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Glucose repression in yeast.
    Carlson M
    Curr Opin Microbiol; 1999 Apr; 2(2):202-7. PubMed ID: 10322167
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genetic and carbon source regulation of phosphorylation of Sip1p, a Snf1p-associated protein involved in carbon response in Saccharomyces cerevisiae.
    Long RM; Hopper JE
    Yeast; 1995 Mar; 11(3):233-46. PubMed ID: 7785324
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chromatin structure of the yeast SUC2 promoter in regulatory mutants.
    Matallana E; Franco L; Pérez-Ortín JE
    Mol Gen Genet; 1992 Feb; 231(3):395-400. PubMed ID: 1538695
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Resveratrol increases glycolytic flux in Saccharomyces cerevisiae via a SNF1-dependet mechanism.
    Madrigal-Perez LA; Nava GM; González-Hernández JC; Ramos-Gomez M
    J Bioenerg Biomembr; 2015 Aug; 47(4):331-6. PubMed ID: 26091703
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Yeast MIG1 repressor is related to the mammalian early growth response and Wilms' tumour finger proteins.
    Nehlin JO; Ronne H
    EMBO J; 1990 Sep; 9(9):2891-8. PubMed ID: 2167835
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of transcription and translation of glycolytic enzymes in glucose-limited continuous cultures of Saccharomyces cerevisiae.
    Sierkstra LN; Verbakel JM; Verrips CT
    J Gen Microbiol; 1992 Dec; 138(12):2559-66. PubMed ID: 1487726
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Signalling pathways leading to transcriptional regulation of genes involved in the activation of glycolysis in yeast.
    Gonçalves PM; Griffioen G; Bebelman JP; Planta RJ
    Mol Microbiol; 1997 Aug; 25(3):483-93. PubMed ID: 9302011
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure and expression of the SNF1 gene of Saccharomyces cerevisiae.
    Celenza JL; Carlson M
    Mol Cell Biol; 1984 Jan; 4(1):54-60. PubMed ID: 6366513
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Yeast carbon catabolite repression.
    Gancedo JM
    Microbiol Mol Biol Rev; 1998 Jun; 62(2):334-61. PubMed ID: 9618445
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of hexose transport in control of glycolytic flux in Saccharomyces cerevisiae.
    Elbing K; Larsson C; Bill RM; Albers E; Snoep JL; Boles E; Hohmann S; Gustafsson L
    Appl Environ Microbiol; 2004 Sep; 70(9):5323-30. PubMed ID: 15345416
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.