These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 15607030)

  • 1. A point mutation at the C-terminal half of the repressor of temperate mycobacteriophage L1 affects its binding to the operator DNA.
    Ganguly T; Chattoraj P; Das M; Chanda PK; Mandal NC; Lee CY; Sau S
    J Biochem Mol Biol; 2004 Nov; 37(6):709-14. PubMed ID: 15607030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of physical, ionic, and structural factors on the binding of repressor of mycobacteriophage L1 to its cognate operator DNA.
    Ganguly T; Chanda PK; Bandhu A; Chattoraj P; Das M; Sau S
    Protein Pept Lett; 2006; 13(8):793-8. PubMed ID: 17073724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Repressor of temperate mycobacteriophage L1 harbors a stable C-terminal domain and binds to different asymmetric operator DNAs with variable affinity.
    Ganguly T; Bandhu A; Chattoraj P; Chanda PK; Das M; Mandal NC; Sau S
    Virol J; 2007 Jun; 4():64. PubMed ID: 17598887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antagonistic effects Na+ and Mg2+ on the structure, function, and stability of mycobacteriophage L1 repressor.
    Bandhu A; Ganguly T; Chanda PK; Das M; Jana B; Chakrabarti G; Sau S
    BMB Rep; 2009 May; 42(5):293-8. PubMed ID: 19470244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning and sequencing analysis of the repressor gene of temperate mycobacteriophage L1.
    Sau S; Chattoraj P; Ganguly T; Lee CY; Mandal NC
    J Biochem Mol Biol; 2004 Mar; 37(2):254-9. PubMed ID: 15469704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regions and residues of an asymmetric operator DNA interacting with the monomeric repressor of temperate mycobacteriophage L1.
    Bandhu A; Ganguly T; Jana B; Mondal R; Sau S
    Biochemistry; 2010 May; 49(19):4235-43. PubMed ID: 20377203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcription regulation in thermophilic bacteria: high resolution contact probing of Bacillus stearothermophilus and Thermotoga neapolitana arginine repressor-operator interactions.
    Song H; Wang H; Gigot D; Dimova D; Sakanyan V; Glansdorff N; Charlier D
    J Mol Biol; 2002 Jan; 315(3):255-74. PubMed ID: 11786010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carboxyl-terminal domain dimer interface mutant 434 repressors have altered dimerization and DNA binding specificities.
    Donner AL; Paa K; Koudelka GB
    J Mol Biol; 1998 Nov; 283(5):931-46. PubMed ID: 9799634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The CTXphi repressor RstR binds DNA cooperatively to form tetrameric repressor-operator complexes.
    Kimsey HH; Waldor MK
    J Biol Chem; 2004 Jan; 279(4):2640-7. PubMed ID: 14610071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mycobacteriophage Alexphander Gene
    Chong Qui E; Habtehyimer F; Germroth A; Grant J; Kosanovic L; Singh I; Hancock SP
    Int J Mol Sci; 2024 Jul; 25(13):. PubMed ID: 39000573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein-DNA complexes in mycobacteriophage L5 integrative recombination.
    Peña CE; Kahlenberg JM; Hatfull GF
    J Bacteriol; 1999 Jan; 181(2):454-61. PubMed ID: 9882658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The G23 and G25 genes of temperate mycobacteriophage L1 are essential for the transcription of its late genes.
    Datta HJ; Mandal P; Bhattacharya R; Das N; Sau S; Mandal NC
    J Biochem Mol Biol; 2007 Mar; 40(2):156-62. PubMed ID: 17394764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contacts between Tet repressor and tet operator revealed by new recognition specificities of single amino acid replacement mutants.
    Baumeister R; Helbl V; Hillen W
    J Mol Biol; 1992 Aug; 226(4):1257-70. PubMed ID: 1518055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Covalent attachment of Arc repressor subunits by a peptide linker enhances affinity for operator DNA.
    Robinson CR; Sauer RT
    Biochemistry; 1996 Jan; 35(1):109-16. PubMed ID: 8555163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lac repressor-operator interaction: N-terminal peptide backbone 1H and 15N chemical shifts upon complex formation with DNA.
    Artz PG; Valentine KG; Opella SJ; Lu P
    J Mol Recognit; 1996; 9(1):13-22. PubMed ID: 8723315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptional regulation and immunity in mycobacteriophage Bxb1.
    Jain S; Hatfull GF
    Mol Microbiol; 2000 Dec; 38(5):971-85. PubMed ID: 11123672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 31P nuclear magnetic resonance spectra and dissociation constants of lac repressor headpiece.duplex operator complexes: the importance of phosphate backbone flexibility in protein.DNA recognition.
    Botuyan MV; Keire DA; Kroen C; Gorenstein DG
    Biochemistry; 1993 Jul; 32(27):6863-74. PubMed ID: 8334119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptional silencing by the mycobacteriophage L5 repressor.
    Brown KL; Sarkis GJ; Wadsworth C; Hatfull GF
    EMBO J; 1997 Oct; 16(19):5914-21. PubMed ID: 9312049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature-sensitive mutations in the bacteriophage Mu c repressor locate a 63-amino-acid DNA-binding domain.
    Vogel JL; Li ZJ; Howe MM; Toussaint A; Higgins NP
    J Bacteriol; 1991 Oct; 173(20):6568-77. PubMed ID: 1833382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calorimetric analysis of lambda cI repressor binding to DNA operator sites.
    Merabet E; Ackers GK
    Biochemistry; 1995 Jul; 34(27):8554-63. PubMed ID: 7612597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.