BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 15607164)

  • 41. Evidence for degradation of 2-chlorophenol by enrichment cultures under denitrifying conditions.
    Bae HS; Yamagishi T; Suwa Y
    Microbiology (Reading); 2002 Jan; 148(Pt 1):221-227. PubMed ID: 11782514
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of nitrates on biotransformation of phosphogypsum and phenol uptake in cultures of autochthonous sludge microflora from petroleum refining wastewaters.
    Kowalski W; Przytocka-Jusiak M; Błaszczyk M; Hołub W; Wolicka D; Wesołowska I
    Acta Microbiol Pol; 2002; 51(1):47-56. PubMed ID: 12184447
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Trace analysis of bromate, chlorate, iodate, and perchlorate in natural and bottled waters.
    Snyder SA; Vanderford BJ; Rexing DJ
    Environ Sci Technol; 2005 Jun; 39(12):4586-93. PubMed ID: 16047796
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Benzene degradation coupled with chlorate reduction in a soil column study.
    Tan NC; van Doesburg W; Langenhoff AA; Stams AJ
    Biodegradation; 2006 Mar; 17(2):113-9. PubMed ID: 16453103
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The effect of various reaction parameters on bioremediation of perchlorate-contaminated water.
    Wu D; He P; Xu X; Zhou M; Zhang Z; Houda Z
    J Hazard Mater; 2008 Jan; 150(2):419-23. PubMed ID: 17560021
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Contribution of quinone-reducing microorganisms to the anaerobic biodegradation of organic compounds under different redox conditions.
    Cervantes FJ; Gutiérrez CH; López KY; Estrada-Alvarado MI; Meza-Escalante ER; Texier AC; Cuervo F; Gómez J
    Biodegradation; 2008 Apr; 19(2):235-46. PubMed ID: 17534721
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Concurrent nitrite oxidation and aerobic denitrification in activated sludge exposed to volatile fatty acids.
    Oguz MT; Robinson KG; Layton AC; Sayler GS
    Biotechnol Bioeng; 2007 Aug; 97(6):1562-72. PubMed ID: 17304559
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bromate formation from bromide oxidation by the UV/persulfate process.
    Fang JY; Shang C
    Environ Sci Technol; 2012 Aug; 46(16):8976-83. PubMed ID: 22831804
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Direct generation of electricity from sludges and other liquid wastes.
    Dentel SK; Strogen B; Chiu P
    Water Sci Technol; 2004; 50(9):161-8. PubMed ID: 15581008
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A strategy for aromatic hydrocarbon bioremediation under anaerobic conditions and the impacts of ethanol: a microcosm study.
    Chen YD; Barker JF; Gui L
    J Contam Hydrol; 2008 Feb; 96(1-4):17-31. PubMed ID: 17964687
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Anaerobic/oxic/anoxic granular sludge process as an effective nutrient removal process utilizing denitrifying polyphosphate-accumulating organisms.
    Kishida N; Kim J; Tsuneda S; Sudo R
    Water Res; 2006 Jul; 40(12):2303-10. PubMed ID: 16766009
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of copper and palladium on the reduction of bromate by Fe(0).
    Xie L; Shang C
    Chemosphere; 2006 Aug; 64(6):919-30. PubMed ID: 16504241
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Anaerobic treatment of 2,4,6-trichlorophenol in an expanded granular sludge bed-anaerobic filter (EGSB-AF) bioreactor at 15 degrees C.
    Collins G; Foy C; McHugh S; O'Flaherty V
    FEMS Microbiol Ecol; 2005 Jun; 53(1):167-78. PubMed ID: 16329938
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Chromium (VI) reduction in activated sludge bacteria exposed to high chromium loading.
    Molokwane PE; Meli CK; Chirwa EM
    Water Sci Technol; 2008; 58(2):399-405. PubMed ID: 18701792
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Pathway fraction of bromate formation during O₃ and O₃/H₂O₂ processes in drinking water treatment.
    Qi S; Mao Y; Lv M; Sun L; Wang X; Yang H; Xie YF
    Chemosphere; 2016 Feb; 144():2436-42. PubMed ID: 26615492
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Net P-removal deterioration in enriched PAO sludge subjected to permanent aerobic conditions.
    Pijuan M; Guisasola A; Baeza JA; Carrera J; Casas C; Lafuente J
    J Biotechnol; 2006 May; 123(1):117-26. PubMed ID: 16324760
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Kinetics of biological perchlorate reduction and pH effect.
    Wang C; Lippincott L; Meng X
    J Hazard Mater; 2008 May; 153(1-2):663-9. PubMed ID: 17935881
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sewage sludge bioleaching by indigenous sulfur-oxidizing bacteria: effects of ratio of substrate dosage to solid content.
    Zhang P; Zhu Y; Zhang G; Zou S; Zeng G; Wu Z
    Bioresour Technol; 2009 Feb; 100(3):1394-8. PubMed ID: 18945613
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Recharge processes drive sulfate reduction in an alluvial aquifer contaminated with landfill leachate.
    Scholl MA; Cozzarelli IM; Christenson SC
    J Contam Hydrol; 2006 Aug; 86(3-4):239-61. PubMed ID: 16677736
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Microbial ecology of a perchlorate-reducing, hydrogen-based membrane biofilm reactor.
    Nerenberg R; Kawagoshi Y; Rittmann BE
    Water Res; 2008 Feb; 42(4-5):1151-9. PubMed ID: 17915282
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.