These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 15607253)

  • 21. Separation processes for organic molecules using SCF Technologies.
    Daintree LS; Kordikowski A; York P
    Adv Drug Deliv Rev; 2008 Feb; 60(3):351-72. PubMed ID: 18006179
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Preparation and evaluation of nanosuspensions for enhancing the dissolution of poorly soluble drugs.
    Kocbek P; Baumgartner S; Kristl J
    Int J Pharm; 2006 Apr; 312(1-2):179-86. PubMed ID: 16469459
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of a supercritical fluid chromatography high-resolution separation method suitable for pharmaceuticals using cyanopropyl silica.
    Brunelli C; Zhao Y; Brown MH; Sandra P
    J Chromatogr A; 2008 Mar; 1185(2):263-72. PubMed ID: 18308326
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Supercritical fluid and unified chromatography.
    Chester TL; Pinkston JD
    Anal Chem; 2004 Aug; 76(16):4606-13. PubMed ID: 15307769
    [No Abstract]   [Full Text] [Related]  

  • 25. Turbidimetric measurement and prediction of dissolution rates of poorly soluble drug nanocrystals.
    Crisp MT; Tucker CJ; Rogers TL; Williams RO; Johnston KP
    J Control Release; 2007 Feb; 117(3):351-9. PubMed ID: 17239469
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Use of surfactants as plasticizers in preparing solid dispersions of poorly soluble API: selection of polymer-surfactant combinations using solubility parameters and testing the processability.
    Ghebremeskel AN; Vemavarapu C; Lodaya M
    Int J Pharm; 2007 Jan; 328(2):119-29. PubMed ID: 16968659
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stabilized nanoparticles of phytosterol by rapid expansion from supercritical solution into aqueous solution.
    Türk M; Lietzow R
    AAPS PharmSciTech; 2004 Sep; 5(4):e56. PubMed ID: 15760053
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Critical freezing rate in freeze drying nanocrystal dispersions.
    Lee J; Cheng Y
    J Control Release; 2006 Mar; 111(1-2):185-92. PubMed ID: 16430987
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Critical size of crystalline ZrO(2) nanoparticles synthesized in near- and supercritical water and supercritical isopropyl alcohol.
    Becker J; Hald P; Bremholm M; Pedersen JS; Chevallier J; Iversen SB; Iversen BB
    ACS Nano; 2008 May; 2(5):1058-68. PubMed ID: 19206504
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Supercritical fluid extraction in plant essential and volatile oil analysis.
    Pourmortazavi SM; Hajimirsadeghi SS
    J Chromatogr A; 2007 Sep; 1163(1-2):2-24. PubMed ID: 17624357
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fast-dissolving microparticles fail to show improved oral bioavailability.
    Wong SM; Kellaway IW; Murdan S
    J Pharm Pharmacol; 2006 Oct; 58(10):1319-26. PubMed ID: 17034654
    [TBL] [Abstract][Full Text] [Related]  

  • 32. One-step preparation of drug-containing microparticles to enhance the dissolution and absorption of poorly water-soluble drugs using a 4-fluid nozzle spray drier.
    Mizoe T; Beppu S; Ozeki T; Okada H
    J Control Release; 2007 Jul; 120(3):205-10. PubMed ID: 17582644
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preparation, characterization and in vivo evaluation of amorphous atorvastatin calcium nanoparticles using supercritical antisolvent (SAS) process.
    Kim MS; Jin SJ; Kim JS; Park HJ; Song HS; Neubert RH; Hwang SJ
    Eur J Pharm Biopharm; 2008 Jun; 69(2):454-65. PubMed ID: 18359211
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Preparation of solid lipid nanoparticles loaded with Xionggui powder-supercritical carbon dioxide fluid extraction and their evaluation in vitro release].
    Chen YJ; Jin RX; Zhou YQ; Zeng J; Zhang H; Feng QR
    Zhongguo Zhong Yao Za Zhi; 2006 Mar; 31(5):376-9. PubMed ID: 16711418
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhancement of the dissolution rate and oral absorption of a poorly water soluble drug by formation of surfactant-containing microparticles.
    Wong SM; Kellaway IW; Murdan S
    Int J Pharm; 2006 Jul; 317(1):61-8. PubMed ID: 16647232
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rapid and high throughput separation technologies--steady state recycling and supercritical fluid chromatography for chiral resolution of pharmaceutical intermediates.
    Yan TQ; Orihuela C
    J Chromatogr A; 2007 Jul; 1156(1-2):220-7. PubMed ID: 17449051
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Supercritical fluid chromatography for bioanalysis: practical and theoretical considerations.
    Lesellier E
    Bioanalysis; 2011 Jan; 3(2):125-31. PubMed ID: 21250840
    [No Abstract]   [Full Text] [Related]  

  • 38. Evaluation of cyclodextrin solubilization of drugs.
    Loftsson T; Hreinsdóttir D; Másson M
    Int J Pharm; 2005 Sep; 302(1-2):18-28. PubMed ID: 16099118
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Application of novel chitosan derivatives in dissolution enhancement of a poorly water soluble drug.
    Aiedeh KM; Khatib HA; Taha MO; Al-Zoubi N
    Pharmazie; 2006 Apr; 61(4):306-11. PubMed ID: 16649543
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Preparation of acetazolamide composite microparticles by supercritical anti-solvent techniques.
    Duarte AR; Roy C; Vega-González A; Duarte CM; Subra-Paternault P
    Int J Pharm; 2007 Mar; 332(1-2):132-9. PubMed ID: 17055198
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.