These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 15607257)

  • 1. Effect of polymerization conditions on the network properties of dex-HEMA microspheres and macro-hydrogels.
    Chung JT; Vlugt-Wensink KD; Hennink WE; Zhang Z
    Int J Pharm; 2005 Jan; 288(1):51-61. PubMed ID: 15607257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of particle size and charge on the network properties of microsphere-based hydrogels.
    Van Tomme SR; van Nostrum CF; Dijkstra M; De Smedt SC; Hennink WE
    Eur J Pharm Biopharm; 2008 Oct; 70(2):522-30. PubMed ID: 18582574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradable dextran hydrogels: controlled release of a model protein from cylinders and microspheres.
    Franssen O; Vandervennet L; Roders P; Hennink WE
    J Control Release; 1999 Aug; 60(2-3):211-21. PubMed ID: 10425327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel glycidyl methacrylated dextran (Dex-GMA)/gelatin hydrogel scaffolds containing microspheres loaded with bone morphogenetic proteins: formulation and characteristics.
    Chen FM; Zhao YM; Sun HH; Jin T; Wang QT; Zhou W; Wu ZF; Jin Y
    J Control Release; 2007 Mar; 118(1):65-77. PubMed ID: 17250921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of degree of substitution of HES-HEMA on the release of incorporated drug models from corresponding hydrogels.
    Schwoerer AD; Harling S; Scheibe K; Menzel H; Daniels R
    Eur J Pharm Biopharm; 2009 Nov; 73(3):351-6. PubMed ID: 19683570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Preparation of cationic dextran microspheres loaded with tetanus toxoid and study on the mechanism of protein loading].
    Zheng CL; Liu XQ; Zhu JB; Zhao YN
    Yao Xue Xue Bao; 2010 Sep; 45(9):1183-7. PubMed ID: 21351577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-gelling hydrogels based on oppositely charged dextran microspheres.
    Van Tomme SR; van Steenbergen MJ; De Smedt SC; van Nostrum CF; Hennink WE
    Biomaterials; 2005 May; 26(14):2129-35. PubMed ID: 15576188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of excipients on the encapsulation efficiency and release of human growth hormone from dextran microspheres.
    Vlugt-Wensink KD; Meijer YJ; van Steenbergen MJ; Verrijk R; Jiskoot W; Crommelin DJ; Hennink WE
    Eur J Pharm Biopharm; 2007 Nov; 67(3):589-96. PubMed ID: 17540550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of heterobifunctional crosslinkers on HEMA hydrogel modulus and toughness.
    Boazak EM; Greene VK; Auguste DT
    PLoS One; 2019; 14(5):e0215895. PubMed ID: 31071122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and characterization of hyperbranched polyglycerol hydrogels.
    Oudshoorn MH; Rissmann R; Bouwstra JA; Hennink WE
    Biomaterials; 2006 Nov; 27(32):5471-9. PubMed ID: 16859743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlled release of a model protein from enzymatically degrading dextran microspheres.
    Franssen O; Stenekes RJ; Hennink WE
    J Control Release; 1999 May; 59(2):219-28. PubMed ID: 10332056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ forming IPN hydrogels of calcium alginate and dextran-HEMA for biomedical applications.
    Pescosolido L; Vermonden T; Malda J; Censi R; Dhert WJ; Alhaique F; Hennink WE; Matricardi P
    Acta Biomater; 2011 Apr; 7(4):1627-33. PubMed ID: 21130186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydroxyethyl starch-based polymers for the controlled release of biomacromolecules from hydrogel microspheres.
    Wöhl-Bruhn S; Bertz A; Harling S; Menzel H; Bunjes H
    Eur J Pharm Biopharm; 2012 Aug; 81(3):573-81. PubMed ID: 22579731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. pH-sensitive hydrogels based on bovine serum albumin for oral drug delivery.
    Iemma F; Spizzirri UG; Puoci F; Muzzalupo R; Trombino S; Cassano R; Leta S; Picci N
    Int J Pharm; 2006 Apr; 312(1-2):151-7. PubMed ID: 16490328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mobility of model proteins in hydrogels composed of oppositely charged dextran microspheres studied by protein release and fluorescence recovery after photobleaching.
    Van Tomme SR; De Geest BG; Braeckmans K; De Smedt SC; Siepmann F; Siepmann J; van Nostrum CF; Hennink WE
    J Control Release; 2005 Dec; 110(1):67-78. PubMed ID: 16253375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Release of recombinant human interleukin-2 from dextran-based hydrogels.
    Cadée JA; de Groot CJ; Jiskoot W; den Otter W; Hennink WE
    J Control Release; 2002 Jan; 78(1-3):1-13. PubMed ID: 11772444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pore sizes in hydrated dextran microspheres.
    Stenekes RJ; De Smedt SC; Demeester J; Sun G; Zhang Z; Hennink WE
    Biomacromolecules; 2000; 1(4):696-703. PubMed ID: 11710200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macroscopic hydrogels by self-assembly of oligolactate-grafted dextran microspheres.
    Van Tomme SR; Mens A; van Nostrum CF; Hennink WE
    Biomacromolecules; 2008 Jan; 9(1):158-65. PubMed ID: 18081253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of network charge on the immobilization and release of proteins from chemically crosslinked dextran hydrogels.
    Schillemans JP; Hennink WE; van Nostrum CF
    Eur J Pharm Biopharm; 2010 Nov; 76(3):329-35. PubMed ID: 20708077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tailoring the swelling pressure of degrading dextran hydroxyethyl methacrylate hydrogels.
    Stubbe BG; Horkay F; Amsden B; Hennink WE; De Smedt SC; Demeester J
    Biomacromolecules; 2003; 4(3):691-5. PubMed ID: 12741786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.