BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 15607869)

  • 21. Creep dominates tensile fatigue damage of the cement-bone interface.
    Kim DG; Miller MA; Mann KA
    J Orthop Res; 2004 May; 22(3):633-40. PubMed ID: 15099645
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of femoral stem surface finish on the apparent static shear strength at the stem-cement interface.
    Zhang H; Brown LT; Blunt LA; Barrans SM
    J Mech Behav Biomed Mater; 2008 Jan; 1(1):96-104. PubMed ID: 19627775
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vitro interface and cement mantle analysis of different femur stem designs.
    Gravius S; Wirtz DC; Siebert CH; Andereya S; Mueller-Rath R; Maus U; Mumme T
    J Biomech; 2008; 41(9):2021-8. PubMed ID: 18514207
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [The biological fixation strength of the bone particle impregnated bone cement].
    Dong F
    Zhonghua Wai Ke Za Zhi; 1992 Oct; 30(10):590-2, 635. PubMed ID: 1306790
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of bleeding on the cement-bone interface. An experimental study.
    Majkowski RS; Bannister GC; Miles AW
    Clin Orthop Relat Res; 1994 Feb; (299):293-7. PubMed ID: 8119032
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Early aseptic loosening of the CF 30 femoral stem].
    Kovanda M; Havlícek V; Hudec J
    Acta Chir Orthop Traumatol Cech; 2007 Feb; 74(1):59-64. PubMed ID: 17331456
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanical evaluation of six types of reconstruction following 25, 50, and 75% resection of the proximal femur.
    Kohles SS; Markel MD; Rock MG; Chao EY; Vanderby R
    J Orthop Res; 1994 Nov; 12(6):834-43. PubMed ID: 7983559
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Precooling of the femoral canal enhances shear strength at the cement-prosthesis interface and reduces the polymerization temperature.
    Hsieh PH; Tai CL; Chang YH; Lee MS; Shih HN; Shih CH
    J Orthop Res; 2006 Sep; 24(9):1809-14. PubMed ID: 16865715
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of low-viscosity cement on mantle morphology and femoral stem micromotion: a cadaver model with simulated blood flow.
    Race A; Miller MA; Clarke MT; Mann KA; Higham PA
    Acta Orthop; 2006 Aug; 77(4):607-16. PubMed ID: 16929438
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reaming versus broaching in cemented hip arthroplasty: mechanical stability in cadaver femora.
    Ioannidis TT; Apostolou CD; Korres DS; Papaletsos I; Gandaifis ND; Panagopoulos CN; Agathocleous PE
    Acta Orthop; 2005 Jun; 76(3):326-30. PubMed ID: 16156458
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sustained pressurization of polymethylmethacrylate: a comparison of low- and moderate-viscosity bone cements.
    Bean DJ; Hollis JM; Woo SL; Convery FR
    J Orthop Res; 1988; 6(4):580-4. PubMed ID: 3379511
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modified PMMA cements for a hydrolysis resistant metal-polymer interface in orthopaedic applications.
    Gbureck U; Grübel S; Thull R; Barralet JE
    Acta Biomater; 2005 Nov; 1(6):671-6. PubMed ID: 16701848
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Larger bone graft size and washing of bone grafts prior to impaction enhances the initial stability of cemented cups: experiments using a synthetic acetabular model.
    Arts JJ; Verdonschot N; Buma P; Schreurs BW
    Acta Orthop; 2006 Apr; 77(2):227-33. PubMed ID: 16752283
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A fatigue damage model for the cement-bone interface.
    Kim DG; Miller MA; Mann KA
    J Biomech; 2004 Oct; 37(10):1505-12. PubMed ID: 15336925
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cement oscillation increases interlock strength at the cement-bone interface, with commentary.
    Wang Y; Han P; Gu W; Shi Z; Li D; Wang C
    Orthopedics; 2009 May; 32(5):325; discussion 325. PubMed ID: 19472963
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanical strength of poly(methyl methacrylate) cement-human bone interfaces.
    Kusleika R; Stupp SI
    J Biomed Mater Res; 1983 May; 17(3):441-58. PubMed ID: 6863348
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Performance of vertebral cancellous bone augmented with compliant PMMA under dynamic loads.
    Boger A; Bohner M; Heini P; Schwieger K; Schneider E
    Acta Biomater; 2008 Nov; 4(6):1688-93. PubMed ID: 18678533
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Impaction allografting for massive femoral defects in revision hip arthroplasty using collared textured stems.
    Van Kleunen JP; Anbari KK; Vu D; Garino JP
    J Arthroplasty; 2006 Apr; 21(3):362-71. PubMed ID: 16627144
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of three-dimensional shape optimization on the probabilistic response of a cemented femoral hip prosthesis.
    Nicolella DP; Thacker BH; Katoozian H; Davy DT
    J Biomech; 2006; 39(7):1265-78. PubMed ID: 15961093
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A study of the bioactive bone cement--bone interface: quantitative and histological evaluation.
    Nishimura N; Taguchi Y; Yamamuro T; Nakamura T; Kokubo T; Yoshihara S
    J Appl Biomater; 1993; 4(1):29-38. PubMed ID: 10148343
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.