These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 15607946)

  • 41. Smaller inner ear sensory epithelia in Neurog 1 null mice are related to earlier hair cell cycle exit.
    Matei V; Pauley S; Kaing S; Rowitch D; Beisel KW; Morris K; Feng F; Jones K; Lee J; Fritzsch B
    Dev Dyn; 2005 Nov; 234(3):633-50. PubMed ID: 16145671
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cloning and developmental expression of nonmuscle myosin IIA (Myh9) in the mammalian inner ear.
    Mhatre AN; Li J; Kim Y; Coling DE; Lalwani AK
    J Neurosci Res; 2004 May; 76(3):296-305. PubMed ID: 15079858
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Glial fibrillary acidic protein expression and promoter activity in the inner ear of developing and adult mice.
    Rio C; Dikkes P; Liberman MC; Corfas G
    J Comp Neurol; 2002 Jan; 442(2):156-62. PubMed ID: 11754168
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Expression patterns of neurotrophin and their receptor mRNAs in the rat inner ear.
    Ylikoski J; Pirvola U; Moshnyakov M; Palgi J; Arumäe U; Saarma M
    Hear Res; 1993 Feb; 65(1-2):69-78. PubMed ID: 8080462
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Localization and expression of clarin-1, the Clrn1 gene product, in auditory hair cells and photoreceptors.
    Zallocchi M; Meehan DT; Delimont D; Askew C; Garige S; Gratton MA; Rothermund-Franklin CA; Cosgrove D
    Hear Res; 2009 Sep; 255(1-2):109-20. PubMed ID: 19539019
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Immunolocalization of the acid-sensing ion channel 2a in the rat cerebellum.
    Jovov B; Tousson A; McMahon LL; Benos DJ
    Histochem Cell Biol; 2003 Jun; 119(6):437-46. PubMed ID: 12768285
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Downregulation of otospiralin, a novel inner ear protein, causes hair cell degeneration and deafness.
    Delprat B; Boulanger A; Wang J; Beaudoin V; Guitton MJ; Ventéo S; Dechesne CJ; Pujol R; Lavigne-Rebillard M; Puel JL; Hamel CP
    J Neurosci; 2002 Mar; 22(5):1718-25. PubMed ID: 11880501
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Expression of the nicotinic acetylcholine receptor subunit, alpha9, in the guinea pig cochlea.
    Park HJ; Niedzielski AS; Wenthold RJ
    Hear Res; 1997 Oct; 112(1-2):95-105. PubMed ID: 9367232
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Time course of auditory impairment in mice lacking the electroneutral sodium bicarbonate cotransporter NBC3 (slc4a7).
    Lopez IA; Acuna D; Galbraith G; Bok D; Ishiyama A; Liu W; Kurtz I
    Brain Res Dev Brain Res; 2005 Nov; 160(1):63-77. PubMed ID: 16181686
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Calbindin (CaBP 28 kDa) appearance and distribution during development of the mouse inner ear.
    Dechesne CJ; Thomasset M
    Brain Res; 1988 May; 468(2):233-42. PubMed ID: 3260120
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Synaptic localization of membrane-associated guanylate kinase-interacting protein mediated by the pleckstrin homology domain.
    Iida J; Nishimura W; Yao I; Hata Y
    Eur J Neurosci; 2002 May; 15(9):1493-8. PubMed ID: 12028359
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The zebrafish pinball wizard gene encodes WRB, a tail-anchored-protein receptor essential for inner-ear hair cells and retinal photoreceptors.
    Lin SY; Vollrath MA; Mangosing S; Shen J; Cardenas E; Corey DP
    J Physiol; 2016 Feb; 594(4):895-914. PubMed ID: 26593130
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Recent advances in the development and function of type II spiral ganglion neurons in the mammalian inner ear.
    Zhang KD; Coate TM
    Semin Cell Dev Biol; 2017 May; 65():80-87. PubMed ID: 27760385
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The insulin receptor substrate IRSp53 links postsynaptic shank1 to the small G-protein cdc42.
    Soltau M; Richter D; Kreienkamp HJ
    Mol Cell Neurosci; 2002 Dec; 21(4):575-83. PubMed ID: 12504591
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Distinct capacity for differentiation to inner ear cell types by progenitor cells of the cochlea and vestibular organs.
    McLean WJ; McLean DT; Eatock RA; Edge AS
    Development; 2016 Dec; 143(23):4381-4393. PubMed ID: 27789624
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Immunohistochemical localization of S-100 protein in auditory and vestibular end organs of the mouse and hamster.
    Foster JD; Drescher MJ; Hatfield JS; Drescher DG
    Hear Res; 1994 Apr; 74(1-2):67-76. PubMed ID: 8040100
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Identification of a glutamate/aspartate transporter in the rat cochlea.
    Li HS; Niedzielski AS; Beisel KW; Hiel H; Wenthold RJ; Morley BJ
    Hear Res; 1994 Aug; 78(2):235-42. PubMed ID: 7527019
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Localization of mRNA encoding the P2X2 receptor subunit of the adenosine 5'-triphosphate-gated ion channel in the adult and developing rat inner ear by in situ hybridization.
    Housley GD; Luo L; Ryan AF
    J Comp Neurol; 1998 Apr; 393(4):403-14. PubMed ID: 9550147
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The calsyntenins--a family of postsynaptic membrane proteins with distinct neuronal expression patterns.
    Hintsch G; Zurlinden A; Meskenaite V; Steuble M; Fink-Widmer K; Kinter J; Sonderegger P
    Mol Cell Neurosci; 2002 Nov; 21(3):393-409. PubMed ID: 12498782
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Calbindin and S100 protein expression in the developing inner ear in mice.
    Buckiová D; Syka J
    J Comp Neurol; 2009 Apr; 513(5):469-82. PubMed ID: 19226521
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.