These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 15608652)

  • 41. Crystal structures of catalytic complexes of the oxidative DNA/RNA repair enzyme AlkB.
    Yu B; Edstrom WC; Benach J; Hamuro Y; Weber PC; Gibney BR; Hunt JF
    Nature; 2006 Feb; 439(7078):879-84. PubMed ID: 16482161
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Infidelity out in the open.
    Doublié S
    Structure; 2004 Oct; 12(10):1749-50. PubMed ID: 15458623
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characterization of a Bacillus subtilis 64-kDa DNA polymerase X potentially involved in DNA repair.
    Baños B; Lázaro JM; Villar L; Salas M; de Vega M
    J Mol Biol; 2008 Dec; 384(5):1019-28. PubMed ID: 18938175
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structures of the Leishmania infantum polymerase beta.
    Mejia E; Burak M; Alonso A; Larraga V; Kunkel TA; Bebenek K; Garcia-Diaz M
    DNA Repair (Amst); 2014 Jun; 18():1-9. PubMed ID: 24666693
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Monoacetylcurcumin: a new inhibitor of eukaryotic DNA polymerase lambda and a new ligand for inhibitor-affinity chromatography.
    Mizushina Y; Ishidoh T; Takeuchi T; Shimazaki N; Koiwai O; Kuramochi K; Kobayashi S; Sugawara F; Sakaguchi K; Yoshida H
    Biochem Biophys Res Commun; 2005 Dec; 337(4):1288-95. PubMed ID: 16236265
    [TBL] [Abstract][Full Text] [Related]  

  • 46. 5-(Hydroxymethyl)-2-furfural: a selective inhibitor of DNA polymerase lambda and terminal deoxynucleotidyltransferase.
    Mizushina Y; Yagita E; Kuramochi K; Kuriyama I; Shimazaki N; Koiwai O; Uchiyama Y; Yomezawa Y; Sugawara F; Kobayashi S; Sakaguchi K; Yoshida H
    Arch Biochem Biophys; 2006 Feb; 446(1):69-76. PubMed ID: 16405901
    [TBL] [Abstract][Full Text] [Related]  

  • 47. DNA polymerase lambda, a novel DNA repair enzyme in human cells.
    García-Díaz M; Bebenek K; Sabariegos R; Domínguez O; Rodríguez J; Kirchhoff T; García-Palomero E; Picher AJ; Juárez R; Ruiz JF; Kunkel TA; Blanco L
    J Biol Chem; 2002 Apr; 277(15):13184-91. PubMed ID: 11821417
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Kinetic mechanism of active site assembly and chemical catalysis of DNA polymerase β.
    Balbo PB; Wang EC; Tsai MD
    Biochemistry; 2011 Nov; 50(45):9865-75. PubMed ID: 22010960
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Structure-function studies of DNA polymerase lambda.
    Garcia-Diaz M; Bebenek K; Gao G; Pedersen LC; London RE; Kunkel TA
    DNA Repair (Amst); 2005 Dec; 4(12):1358-67. PubMed ID: 16213194
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A fidelity mechanism in DNA polymerase lambda promotes error-free bypass of 8-oxo-dG.
    Burak MJ; Guja KE; Hambardjieva E; Derkunt B; Garcia-Diaz M
    EMBO J; 2016 Sep; 35(18):2045-59. PubMed ID: 27481934
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Structural analysis of strand misalignment during DNA synthesis by a human DNA polymerase.
    Garcia-Diaz M; Bebenek K; Krahn JM; Pedersen LC; Kunkel TA
    Cell; 2006 Jan; 124(2):331-42. PubMed ID: 16439207
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Opposed steric constraints in human DNA polymerase beta and E. coli DNA polymerase I.
    Di Pasquale F; Fischer D; Grohmann D; Restle T; Geyer A; Marx A
    J Am Chem Soc; 2008 Aug; 130(32):10748-57. PubMed ID: 18627154
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Simulating the effect of DNA polymerase mutations on transition-state energetics and fidelity: evaluating amino acid group contribution and allosteric coupling for ionized residues in human pol beta.
    Xiang Y; Oelschlaeger P; Florián J; Goodman MF; Warshel A
    Biochemistry; 2006 Jun; 45(23):7036-48. PubMed ID: 16752894
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Network of dynamically important residues in the open/closed transition in polymerases is strongly conserved.
    Zheng W; Brooks BR; Doniach S; Thirumalai D
    Structure; 2005 Apr; 13(4):565-77. PubMed ID: 15837195
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structural relationship of curcumin derivatives binding to the BRCT domain of human DNA polymerase lambda.
    Takeuchi T; Ishidoh T; Iijima H; Kuriyama I; Shimazaki N; Koiwai O; Kuramochi K; Kobayashi S; Sugawara F; Sakaguchi K; Yoshida H; Mizushina Y
    Genes Cells; 2006 Mar; 11(3):223-35. PubMed ID: 16483311
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Structure and mechanism of DNA polymerase β.
    Beard WA; Wilson SH
    Biochemistry; 2014 May; 53(17):2768-80. PubMed ID: 24717170
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Uniform Free-Energy Profiles of the P-O Bond Formation and Cleavage Reactions Catalyzed by DNA Polymerases β and λ.
    Klvaňa M; Bren U; Florián J
    J Phys Chem B; 2016 Dec; 120(51):13017-13030. PubMed ID: 27992186
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Transitions in DNA polymerase β μs-ms dynamics related to substrate binding and catalysis.
    DeRose EF; Kirby TW; Mueller GA; Beard WA; Wilson SH; London RE
    Nucleic Acids Res; 2018 Aug; 46(14):7309-7322. PubMed ID: 29917149
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structure and mechanism of DNA polymerase Beta.
    Beard WA; Wilson SH
    Chem Rev; 2006 Feb; 106(2):361-82. PubMed ID: 16464010
    [No Abstract]   [Full Text] [Related]  

  • 60. Sulfoquinovosylmonoacylglycerol inhibitory mode analysis of rat DNA polymerase beta.
    Kasai N; Mizushina Y; Murata H; Yamazaki T; Ohkubo T; Sakaguchi K; Sugawara F
    FEBS J; 2005 Sep; 272(17):4349-61. PubMed ID: 16128805
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.