BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

595 related articles for article (PubMed ID: 15609999)

  • 1. Conformational changes in the active site loops of dihydrofolate reductase during the catalytic cycle.
    Venkitakrishnan RP; Zaborowski E; McElheny D; Benkovic SJ; Dyson HJ; Wright PE
    Biochemistry; 2004 Dec; 43(51):16046-55. PubMed ID: 15609999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cofactor-Mediated Conformational Dynamics Promote Product Release From Escherichia coli Dihydrofolate Reductase via an Allosteric Pathway.
    Oyen D; Fenwick RB; Stanfield RL; Dyson HJ; Wright PE
    J Am Chem Soc; 2015 Jul; 137(29):9459-68. PubMed ID: 26147643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Loop and subdomain movements in the mechanism of Escherichia coli dihydrofolate reductase: crystallographic evidence.
    Sawaya MR; Kraut J
    Biochemistry; 1997 Jan; 36(3):586-603. PubMed ID: 9012674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Defining the role of active-site loop fluctuations in dihydrofolate reductase catalysis.
    McElheny D; Schnell JR; Lansing JC; Dyson HJ; Wright PE
    Proc Natl Acad Sci U S A; 2005 Apr; 102(14):5032-7. PubMed ID: 15795383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diagnostic chemical shift markers for loop conformation and substrate and cofactor binding in dihydrofolate reductase complexes.
    Osborne MJ; Venkitakrishnan RP; Dyson HJ; Wright PE
    Protein Sci; 2003 Oct; 12(10):2230-8. PubMed ID: 14500880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ligand-induced conformational changes in the crystal structures of Pneumocystis carinii dihydrofolate reductase complexes with folate and NADP+.
    Cody V; Galitsky N; Rak D; Luft JR; Pangborn W; Queener SF
    Biochemistry; 1999 Apr; 38(14):4303-12. PubMed ID: 10194348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of Active Site Loop Dynamics in Mediating Ligand Release from
    Singh A; Fenwick RB; Dyson HJ; Wright PE
    Biochemistry; 2021 Sep; 60(35):2663-2671. PubMed ID: 34428034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tales of Dihydrofolate Binding to R67 Dihydrofolate Reductase.
    Duff MR; Chopra S; Strader MB; Agarwal PK; Howell EE
    Biochemistry; 2016 Jan; 55(1):133-45. PubMed ID: 26637016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Backbone dynamics in dihydrofolate reductase complexes: role of loop flexibility in the catalytic mechanism.
    Osborne MJ; Schnell J; Benkovic SJ; Dyson HJ; Wright PE
    Biochemistry; 2001 Aug; 40(33):9846-59. PubMed ID: 11502178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A glutamine 67--> histidine mutation in homotetrameric R67 dihydrofolate reductase results in four mutations per single active site pore and causes substantial substrate and cofactor inhibition.
    Park H; Bradrick TD; Howell EE
    Protein Eng; 1997 Dec; 10(12):1415-24. PubMed ID: 9543003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of water in the catalytic cycle of E. coli dihydrofolate reductase.
    Shrimpton P; Allemann RK
    Protein Sci; 2002 Jun; 11(6):1442-51. PubMed ID: 12021443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Millisecond timescale fluctuations in dihydrofolate reductase are exquisitely sensitive to the bound ligands.
    Boehr DD; McElheny D; Dyson HJ; Wright PE
    Proc Natl Acad Sci U S A; 2010 Jan; 107(4):1373-8. PubMed ID: 20080605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of cofactor binding and loop conformation on side chain methyl dynamics in dihydrofolate reductase.
    Schnell JR; Dyson HJ; Wright PE
    Biochemistry; 2004 Jan; 43(2):374-83. PubMed ID: 14717591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strength of an interloop hydrogen bond determines the kinetic pathway in catalysis by Escherichia coli dihydrofolate reductase.
    Miller GP; Benkovic SJ
    Biochemistry; 1998 May; 37(18):6336-42. PubMed ID: 9572848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deletion of a highly motional residue affects formation of the Michaelis complex for Escherichia coli dihydrofolate reductase.
    Miller GP; Benkovic SJ
    Biochemistry; 1998 May; 37(18):6327-35. PubMed ID: 9572847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interligand Overhauser effects in type II dihydrofolate reductase.
    Li D; Levy LA; Gabel SA; Lebetkin MS; DeRose EF; Wall MJ; Howell EE; London RE
    Biochemistry; 2001 Apr; 40(14):4242-52. PubMed ID: 11284680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functionally important conformations of the Met20 loop in dihydrofolate reductase are populated by rapid thermal fluctuations.
    Arora K; Brooks Iii CL
    J Am Chem Soc; 2009 Apr; 131(15):5642-7. PubMed ID: 19323547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-pressure protein crystal structure analysis of Escherichia coli dihydrofolate reductase complexed with folate and NADP
    Nagae T; Yamada H; Watanabe N
    Acta Crystallogr D Struct Biol; 2018 Sep; 74(Pt 9):895-905. PubMed ID: 30198899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The dynamic energy landscape of dihydrofolate reductase catalysis.
    Boehr DD; McElheny D; Dyson HJ; Wright PE
    Science; 2006 Sep; 313(5793):1638-42. PubMed ID: 16973882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for a functional role of the dynamics of glycine-121 of Escherichia coli dihydrofolate reductase obtained from kinetic analysis of a site-directed mutant.
    Cameron CE; Benkovic SJ
    Biochemistry; 1997 Dec; 36(50):15792-800. PubMed ID: 9398309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.