These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 15610003)
1. De novo design of a copper(II)-binding helix-turn-helix chimera: the prion octarepeat motif in a new context. Shields SB; Franklin SJ Biochemistry; 2004 Dec; 43(51):16086-91. PubMed ID: 15610003 [TBL] [Abstract][Full Text] [Related]
2. Computational studies of Cu(II)[peptide] binding motifs: Cu[HGGG] and Cu[HG] as models for Cu(II) binding to the prion protein octarepeat region. Pushie MJ; Rauk A J Biol Inorg Chem; 2003 Jan; 8(1-2):53-65. PubMed ID: 12459899 [TBL] [Abstract][Full Text] [Related]
3. Interaction of copper(II) with the prion peptide fragment HuPrP(76-114) encompassing four histidyl residues within and outside the octarepeat domain. Di Natale G; Osz K; Nagy Z; Sanna D; Micera G; Pappalardo G; Sóvágó I; Rizzarell E Inorg Chem; 2009 May; 48(9):4239-50. PubMed ID: 19348438 [TBL] [Abstract][Full Text] [Related]
4. A doppel alpha-helix peptide fragment mimics the copper(II) interactions with the whole protein. La Mendola D; Magrì A; Campagna T; Campitiello MA; Raiola L; Isernia C; Hansson O; Bonomo RP; Rizzarelli E Chemistry; 2010 Jun; 16(21):6212-23. PubMed ID: 20411530 [TBL] [Abstract][Full Text] [Related]
5. Prion protein interaction with glycosaminoglycan occurs with the formation of oligomeric complexes stabilized by Cu(II) bridges. González-Iglesias R; Pajares MA; Ocal C; Espinosa JC; Oesch B; Gasset M J Mol Biol; 2002 May; 319(2):527-40. PubMed ID: 12051926 [TBL] [Abstract][Full Text] [Related]
6. Electron paramagnetic resonance evidence for binding of Cu(2+) to the C-terminal domain of the murine prion protein. Cereghetti GM; Schweiger A; Glockshuber R; Van Doorslaer S Biophys J; 2001 Jul; 81(1):516-25. PubMed ID: 11423433 [TBL] [Abstract][Full Text] [Related]
7. A DFT study of EPR parameters in Cu(II) complexes of the octarepeat region of the prion protein. Bruschi M; De Gioia L; Mitrić R; Bonacić-Koutecký V; Fantucci P Phys Chem Chem Phys; 2008 Aug; 10(31):4573-83. PubMed ID: 18665307 [TBL] [Abstract][Full Text] [Related]
8. Investigation of the affinity and selectivity of avian prion hexarepeat peptides for physiological divalent metal ions. Shields SB; Franklin SJ J Inorg Biochem; 2007 May; 101(5):783-8. PubMed ID: 17346797 [TBL] [Abstract][Full Text] [Related]
9. The copper(II) adduct of the unstructured region of the amyloidogenic fragment derived from the human prion protein is redox-active at physiological pH. Shearer J; Soh P Inorg Chem; 2007 Feb; 46(3):710-9. PubMed ID: 17257012 [TBL] [Abstract][Full Text] [Related]
10. Copper(II) inhibits in vitro conversion of prion protein into amyloid fibrils. Bocharova OV; Breydo L; Salnikov VV; Baskakov IV Biochemistry; 2005 May; 44(18):6776-87. PubMed ID: 15865423 [TBL] [Abstract][Full Text] [Related]
11. Structural and dynamic characterization of copper(II) binding of the human prion protein outside the octarepeat region. Berti F; Gaggelli E; Guerrini R; Janicka A; Kozlowski H; Legowska A; Miecznikowska H; Migliorini C; Pogni R; Remelli M; Rolka K; Valensin D; Valensin G Chemistry; 2007; 13(7):1991-2001. PubMed ID: 17152102 [TBL] [Abstract][Full Text] [Related]
12. Binding of Cu(II) or Zn(II) in a de novo designed triple-stranded alpha-helical coiled-coil toward a prototype for a metalloenzyme. Kiyokawa T; Kanaori K; Tajima K; Koike M; Mizuno T; Oku JI; Tanaka T J Pept Res; 2004 Apr; 63(4):347-53. PubMed ID: 15102052 [TBL] [Abstract][Full Text] [Related]
14. Copper binding to prion octarepeat peptides, a combined metal chelate affinity and immunochemical approaches. Todorova-Balvay D; Simon S; Créminon C; Grassi J; Srikrishnan T; Vijayalakshmi MA J Chromatogr B Analyt Technol Biomed Life Sci; 2005 Apr; 818(1):75-82. PubMed ID: 15722047 [TBL] [Abstract][Full Text] [Related]
15. Thermodynamic and spectroscopic investigation on the role of Met residues in Cu(II) binding to the non-octarepeat site of the human prion protein. Remelli M; Valensin D; Toso L; Gralka E; Guerrini R; Marzola E; Kozłowski H Metallomics; 2012 Aug; 4(8):794-806. PubMed ID: 22791135 [TBL] [Abstract][Full Text] [Related]
16. Copper and zinc binding properties of the N-terminal histidine-rich sequence of Haemophilus ducreyi Cu,Zn superoxide dismutase. Paksi Z; Jancsó A; Pacello F; Nagy N; Battistoni A; Gajda T J Inorg Biochem; 2008 Sep; 102(9):1700-10. PubMed ID: 18565588 [TBL] [Abstract][Full Text] [Related]
17. Copper(II) interaction with unstructured prion domain outside the octarepeat region: speciation, stability, and binding details of copper(II) complexes with PrP106-126 peptides. Di Natale G; Grasso G; Impellizzeri G; La Mendola D; Micera G; Mihala N; Nagy Z; Osz K; Pappalardo G; Rigó V; Rizzarelli E; Sanna D; Sóvágó I Inorg Chem; 2005 Oct; 44(20):7214-25. PubMed ID: 16180886 [TBL] [Abstract][Full Text] [Related]
18. Ni K-edge XAS suggests that coordination of Ni(II) to the unstructured amyloidogenic region of the human prion protein produces a Ni(2) bis-mu-hydroxo dimer. Shearer J; Soh P J Inorg Biochem; 2007 Feb; 101(2):370-3. PubMed ID: 17126907 [TBL] [Abstract][Full Text] [Related]
19. Of folding and function: understanding active-site context through metalloenzyme design. Harris KL; Lim S; Franklin SJ Inorg Chem; 2006 Dec; 45(25):10002-12. PubMed ID: 17140195 [TBL] [Abstract][Full Text] [Related]
20. Effects of the pathological Q212P mutation on human prion protein non-octarepeat copper-binding site. D'Angelo P; Della Longa S; Arcovito A; Mancini G; Zitolo A; Chillemi G; Giachin G; Legname G; Benetti F Biochemistry; 2012 Aug; 51(31):6068-79. PubMed ID: 22788868 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]