BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 15610004)

  • 21. Base excision repair synthesis of DNA containing 8-oxoguanine in Escherichia coli.
    Lee YS; Chung MH
    Exp Mol Med; 2003 Apr; 35(2):106-12. PubMed ID: 12754414
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Arabidopsis thaliana Ogg1 protein excises 8-hydroxyguanine and 2,6-diamino-4-hydroxy-5-formamidopyrimidine from oxidatively damaged DNA containing multiple lesions.
    Morales-Ruiz T; Birincioglu M; Jaruga P; Rodriguez H; Roldan-Arjona T; Dizdaroglu M
    Biochemistry; 2003 Mar; 42(10):3089-95. PubMed ID: 12627976
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Real-time studies of conformational dynamics of the repair enzyme E. coli formamidopyrimidine-DNA glycosylase and its DNA complexes during catalytic cycle.
    Koval VV; Kuznetsov NA; Ishchenko AA; Saparbaev MK; Fedorova OS
    Mutat Res; 2010 Mar; 685(1-2):3-10. PubMed ID: 19751748
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural Insight into the Discrimination between 8-Oxoguanine Glycosidic Conformers by DNA Repair Enzymes: A Molecular Dynamics Study of Human Oxoguanine Glycosylase 1 and Formamidopyrimidine-DNA Glycosylase.
    Sowlati-Hashjin S; Wetmore SD
    Biochemistry; 2018 Feb; 57(7):1144-1154. PubMed ID: 29320630
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reciprocal "flipping" underlies substrate recognition and catalytic activation by the human 8-oxo-guanine DNA glycosylase.
    Bjørås M; Seeberg E; Luna L; Pearl LH; Barrett TE
    J Mol Biol; 2002 Mar; 317(2):171-7. PubMed ID: 11902834
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Escherichia coli MutY and Fpg utilize a processive mechanism for target location.
    Francis AW; David SS
    Biochemistry; 2003 Jan; 42(3):801-10. PubMed ID: 12534293
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A distinct role of formamidopyrimidine DNA glycosylase (MutM) in down-regulation of accumulation of G, C mutations and protection against oxidative stress in mycobacteria.
    Jain R; Kumar P; Varshney U
    DNA Repair (Amst); 2007 Dec; 6(12):1774-85. PubMed ID: 17698424
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Efficient removal of formamidopyrimidines by 8-oxoguanine glycosylases.
    Krishnamurthy N; Haraguchi K; Greenberg MM; David SS
    Biochemistry; 2008 Jan; 47(3):1043-50. PubMed ID: 18154319
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ionic strength and magnesium affect the specificity of Escherichia coli and human 8-oxoguanine-DNA glycosylases.
    Sidorenko VS; Mechetin GV; Nevinsky GA; Zharkov DO
    FEBS J; 2008 Aug; 275(15):3747-60. PubMed ID: 18557781
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modulation of the turnover of formamidopyrimidine DNA glycosylase.
    Harbut MB; Meador M; Dodson ML; Lloyd RS
    Biochemistry; 2006 Jun; 45(23):7341-6. PubMed ID: 16752923
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Overexpression and rapid purification of Escherichia coli formamidopyrimidine-DNA glycosylase.
    Reddy P; Jaruga P; O'Connor T; Rodriguez H; Dizdaroglu M
    Protein Expr Purif; 2004 Mar; 34(1):126-33. PubMed ID: 14766308
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Opposite base-dependent excision of 7,8-dihydro-8-oxoadenine by the Ogg1 protein of Saccharomyces cerevisiae.
    Girard PM; D'Ham C; Cadet J; Boiteux S
    Carcinogenesis; 1998 Jul; 19(7):1299-305. PubMed ID: 9683192
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced mutagenic potential of 8-oxo-7,8-dihydroguanine when present within a clustered DNA damage site.
    Pearson CG; Shikazono N; Thacker J; O'Neill P
    Nucleic Acids Res; 2004; 32(1):263-70. PubMed ID: 14715924
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of lysine-57 in the catalytic activities of Escherichia coli formamidopyrimidine-DNA glycosylase (Fpg protein).
    Sidorkina OM; Laval J
    Nucleic Acids Res; 1998 Dec; 26(23):5351-7. PubMed ID: 9826758
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Single-stranded oligodeoxyribonucleotides are substrates of Fpg protein from Escherichia coli.
    Ishchenko AA; Bulychev NV; Maksakova GA; Johnson F; Nevinsky GA
    IUBMB Life; 1999 Dec; 48(6):613-8. PubMed ID: 10683766
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Substrate discrimination by formamidopyrimidine-DNA glycosylase: a mutational analysis.
    Zaika EI; Perlow RA; Matz E; Broyde S; Gilboa R; Grollman AP; Zharkov DO
    J Biol Chem; 2004 Feb; 279(6):4849-61. PubMed ID: 14607836
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Repair of formamidopyrimidines in DNA involves different glycosylases: role of the OGG1, NTH1, and NEIL1 enzymes.
    Hu J; de Souza-Pinto NC; Haraguchi K; Hogue BA; Jaruga P; Greenberg MM; Dizdaroglu M; Bohr VA
    J Biol Chem; 2005 Dec; 280(49):40544-51. PubMed ID: 16221681
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Active destabilization of base pairs by a DNA glycosylase wedge initiates damage recognition.
    Kuznetsov NA; Bergonzo C; Campbell AJ; Li H; Mechetin GV; de los Santos C; Grollman AP; Fedorova OS; Zharkov DO; Simmerling C
    Nucleic Acids Res; 2015 Jan; 43(1):272-81. PubMed ID: 25520195
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural insights into lesion recognition and repair by the bacterial 8-oxoguanine DNA glycosylase MutM.
    Fromme JC; Verdine GL
    Nat Struct Biol; 2002 Jul; 9(7):544-52. PubMed ID: 12055620
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A combinatorial role for MutY and Fpg DNA glycosylases in mutation avoidance in Mycobacterium smegmatis.
    Hassim F; Papadopoulos AO; Kana BD; Gordhan BG
    Mutat Res; 2015 Sep; 779():24-32. PubMed ID: 26125998
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.