BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 15610181)

  • 1. Elevation of the level and activity of acid ceramidase in Alzheimer's disease brain.
    Huang Y; Tanimukai H; Liu F; Iqbal K; Grundke-Iqbal I; Gong CX
    Eur J Neurosci; 2004 Dec; 20(12):3489-97. PubMed ID: 15610181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-tau based neuronal degeneration in Alzheimer's disease -- an immunocytochemical and quantitative study in the supragranular layers of the middle temporal neocortex.
    van de Nes JA; Nafe R; Schlote W
    Brain Res; 2008 Jun; 1213():152-65. PubMed ID: 18455153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brain site-specific gene expression analysis in Alzheimer's disease patients.
    Yokota T; Mishra M; Akatsu H; Tani Y; Miyauchi T; Yamamoto T; Kosaka K; Nagai Y; Sawada T; Heese K
    Eur J Clin Invest; 2006 Nov; 36(11):820-30. PubMed ID: 17032350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glycosylation changes in Alzheimer's disease as revealed by a proteomic approach.
    Kanninen K; Goldsteins G; Auriola S; Alafuzoff I; Koistinaho J
    Neurosci Lett; 2004 Sep; 367(2):235-40. PubMed ID: 15331161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Age- and stage-dependent glyoxalase I expression and its activity in normal and Alzheimer's disease brains.
    Kuhla B; Boeck K; Schmidt A; Ogunlade V; Arendt T; Münch G; Lüth HJ
    Neurobiol Aging; 2007 Jan; 28(1):29-41. PubMed ID: 16427160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A peptidyl-prolyl isomerase, FKBP12, accumulates in Alzheimer neurofibrillary tangles.
    Sugata H; Matsuo K; Nakagawa T; Takahashi M; Mukai H; Ono Y; Maeda K; Akiyama H; Kawamata T
    Neurosci Lett; 2009 Aug; 459(2):96-9. PubMed ID: 19414059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overexpression and mass spectrometry analysis of mature human acid ceramidase.
    Schulze H; Schepers U; Sandhoff K
    Biol Chem; 2007 Dec; 388(12):1333-43. PubMed ID: 18020949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An aluminum-based rat model for Alzheimer's disease exhibits oxidative damage, inhibition of PP2A activity, hyperphosphorylated tau, and granulovacuolar degeneration.
    Walton JR
    J Inorg Biochem; 2007 Sep; 101(9):1275-84. PubMed ID: 17662457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alpha1-antichymotrypsin, an inflammatory protein overexpressed in Alzheimer's disease brain, induces tau phosphorylation in neurons.
    Padmanabhan J; Levy M; Dickson DW; Potter H
    Brain; 2006 Nov; 129(Pt 11):3020-34. PubMed ID: 16987932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Altered beta-secretase enzyme kinetics and levels of both BACE1 and BACE2 in the Alzheimer's disease brain.
    Stockley JH; Ravid R; O'Neill C
    FEBS Lett; 2006 Dec; 580(28-29):6550-60. PubMed ID: 17113083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activated c-Jun is present in neurofibrillary tangles in Alzheimer's disease brains.
    Pearson AG; Byrne UT; MacGibbon GA; Faull RL; Dragunow M
    Neurosci Lett; 2006 May; 398(3):246-50. PubMed ID: 16481106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aromatase enzyme and Alzheimer's disease.
    Hiltunen M; Iivonen S; Soininen H
    Minerva Endocrinol; 2006 Mar; 31(1):61-73. PubMed ID: 16498364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox proteomics identification of oxidatively modified proteins in Alzheimer's disease brain and in vivo and in vitro models of AD centered around Abeta(1-42).
    Sultana R; Perluigi M; Butterfield DA
    J Chromatogr B Analyt Technol Biomed Life Sci; 2006 Mar; 833(1):3-11. PubMed ID: 16236561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. mTOR/p70S6k signalling alteration by Abeta exposure as well as in APP-PS1 transgenic models and in patients with Alzheimer's disease.
    Lafay-Chebassier C; Paccalin M; Page G; Barc-Pain S; Perault-Pochat MC; Gil R; Pradier L; Hugon J
    J Neurochem; 2005 Jul; 94(1):215-25. PubMed ID: 15953364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox proteomics identification of oxidized proteins in Alzheimer's disease hippocampus and cerebellum: an approach to understand pathological and biochemical alterations in AD.
    Sultana R; Boyd-Kimball D; Poon HF; Cai J; Pierce WM; Klein JB; Merchant M; Markesbery WR; Butterfield DA
    Neurobiol Aging; 2006 Nov; 27(11):1564-76. PubMed ID: 16271804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neurofibrillary degeneration in Alzheimer's disease: from molecular mechanisms to identification of drug targets.
    Pei JJ; Sjögren M; Winblad B
    Curr Opin Psychiatry; 2008 Nov; 21(6):555-61. PubMed ID: 18852562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Down-regulation of muscarinic acetylcholine receptor M2 adversely affects the expression of Alzheimer's disease-relevant genes and proteins.
    Zuchner T; Schliebs R; Perez-Polo JR
    J Neurochem; 2005 Oct; 95(1):20-32. PubMed ID: 16181410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The 20S proteasome isolated from Alzheimer's disease brain shows post-translational modifications but unchanged proteolytic activity.
    Gillardon F; Kloss A; Berg M; Neumann M; Mechtler K; Hengerer B; Dahlmann B
    J Neurochem; 2007 Jun; 101(6):1483-90. PubMed ID: 17286585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beta-site APP cleaving enzyme 1 (BACE1) is increased in remaining neurons in Alzheimer's disease brains.
    Harada H; Tamaoka A; Ishii K; Shoji S; Kametaka S; Kametani F; Saito Y; Murayama S
    Neurosci Res; 2006 Jan; 54(1):24-9. PubMed ID: 16290302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implication of calpain in neuronal apoptosis. A possible regulation of Alzheimer's disease.
    Raynaud F; Marcilhac A
    FEBS J; 2006 Aug; 273(15):3437-43. PubMed ID: 16884489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.