These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 15610356)
1. beta-1,3-Glucanase gene expression in low-hydrated seeds as a mechanism for dormancy release during tobacco after-ripening. Leubner-Metzger G Plant J; 2005 Jan; 41(1):133-45. PubMed ID: 15610356 [TBL] [Abstract][Full Text] [Related]
2. Seed after-ripening and over-expression of class I beta-1,3-glucanase confer maternal effects on tobacco testa rupture and dormancy release. Leubner-Metzger G Planta; 2002 Oct; 215(6):959-68. PubMed ID: 12355156 [TBL] [Abstract][Full Text] [Related]
3. Antisense-transformation reveals novel roles for class I beta-1,3-glucanase in tobacco seed after-ripening and photodormancy. Leubner-Metzger G; Meins F J Exp Bot; 2001 Sep; 52(362):1753-9. PubMed ID: 11520863 [TBL] [Abstract][Full Text] [Related]
4. Sense transformation reveals a novel role for class I beta-1, 3-glucanase in tobacco seed germination. Leubner-Metzger G; Meins F Plant J; 2000 Jul; 23(2):215-21. PubMed ID: 10929115 [TBL] [Abstract][Full Text] [Related]
5. Brassinosteroids and gibberellins promote tobacco seed germination by distinct pathways. Leubner-Metzger G Planta; 2001 Sep; 213(5):758-63. PubMed ID: 11678280 [TBL] [Abstract][Full Text] [Related]
6. Seed dormancy release in Arabidopsis Cvi by dry after-ripening, low temperature, nitrate and light shows common quantitative patterns of gene expression directed by environmentally specific sensing. Finch-Savage WE; Cadman CS; Toorop PE; Lynn JR; Hilhorst HW Plant J; 2007 Jul; 51(1):60-78. PubMed ID: 17461781 [TBL] [Abstract][Full Text] [Related]
7. ROS production and protein oxidation as a novel mechanism for seed dormancy alleviation. Oracz K; El-Maarouf Bouteau H; Farrant JM; Cooper K; Belghazi M; Job C; Job D; Corbineau F; Bailly C Plant J; 2007 May; 50(3):452-65. PubMed ID: 17376157 [TBL] [Abstract][Full Text] [Related]
8. Transcriptional programs regulating seed dormancy and its release by after-ripening in common wheat (Triticum aestivum L.). Gao F; Jordan MC; Ayele BT Plant Biotechnol J; 2012 May; 10(4):465-76. PubMed ID: 22292455 [TBL] [Abstract][Full Text] [Related]
9. Ethylene-responsive element binding protein (EREBP) expression and the transcriptional regulation of class I beta-1,3-glucanase during tobacco seed germination. Leubner-Metzger G; Petruzzelli L; Waldvogel R; Vögeli-Lange R; Meins F Plant Mol Biol; 1998 Nov; 38(5):785-95. PubMed ID: 9862496 [TBL] [Abstract][Full Text] [Related]
10. The MtSNF4b subunit of the sucrose non-fermenting-related kinase complex connects after-ripening and constitutive defense responses in seeds of Medicago truncatula. Bolingue W; Rosnoblet C; Leprince O; Vu BL; Aubry C; Buitink J Plant J; 2010 Mar; 61(5):792-803. PubMed ID: 20015062 [TBL] [Abstract][Full Text] [Related]
11. Dormancy release during hydrated storage in Lolium rigidum seeds is dependent on temperature, light quality, and hydration status. Steadman KJ J Exp Bot; 2004 Apr; 55(398):929-37. PubMed ID: 15020641 [TBL] [Abstract][Full Text] [Related]
12. Identification of transcripts potentially involved in barley seed germination and dormancy using cDNA-AFLP. Leymarie J; Bruneaux E; Gibot-Leclerc S; Corbineau F J Exp Bot; 2007; 58(3):425-37. PubMed ID: 17175551 [TBL] [Abstract][Full Text] [Related]
13. Integrated analysis of seed proteome and mRNA oxidation reveals distinct post-transcriptional features regulating dormancy in wheat (Triticum aestivum L.). Gao F; Rampitsch C; Chitnis VR; Humphreys GD; Jordan MC; Ayele BT Plant Biotechnol J; 2013 Oct; 11(8):921-32. PubMed ID: 23745731 [TBL] [Abstract][Full Text] [Related]
14. The BME3 (Blue Micropylar End 3) GATA zinc finger transcription factor is a positive regulator of Arabidopsis seed germination. Liu PP; Koizuka N; Martin RC; Nonogaki H Plant J; 2005 Dec; 44(6):960-71. PubMed ID: 16359389 [TBL] [Abstract][Full Text] [Related]
15. Seed desiccation: a bridge between maturation and germination. Angelovici R; Galili G; Fernie AR; Fait A Trends Plant Sci; 2010 Apr; 15(4):211-8. PubMed ID: 20138563 [TBL] [Abstract][Full Text] [Related]
16. Gene expression profiles of Arabidopsis Cvi seeds during dormancy cycling indicate a common underlying dormancy control mechanism. Cadman CS; Toorop PE; Hilhorst HW; Finch-Savage WE Plant J; 2006 Jun; 46(5):805-22. PubMed ID: 16709196 [TBL] [Abstract][Full Text] [Related]
17. Retarded germination of Nicotiana tabacum seeds following insertion of exogenous DNA mimics the seed persistent behavior. Onelli E; Moscatelli A; Gagliardi A; Zaninelli M; Bini L; Baldi A; Caccianiga M; Reggi S; Rossi L PLoS One; 2017; 12(12):e0187929. PubMed ID: 29216220 [TBL] [Abstract][Full Text] [Related]
18. Post-genomics dissection of seed dormancy and germination. Holdsworth MJ; Finch-Savage WE; Grappin P; Job D Trends Plant Sci; 2008 Jan; 13(1):7-13. PubMed ID: 18160329 [TBL] [Abstract][Full Text] [Related]
19. Co-ordinate regulation of sterol biosynthesis enzyme activity during accumulation of sterols in developing rape and tobacco seed. Harker M; Hellyer A; Clayton JC; Duvoix A; Lanot A; Safford R Planta; 2003 Feb; 216(4):707-15. PubMed ID: 12569414 [TBL] [Abstract][Full Text] [Related]
20. Large-scale screening of Arabidopsis enhancer-trap lines for seed germination-associated genes. Liu PP; Koizuka N; Homrichhausen TM; Hewitt JR; Martin RC; Nonogaki H Plant J; 2005 Mar; 41(6):936-44. PubMed ID: 15743455 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]