These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 15610732)

  • 1. A mechanism for the potent inhibition of eukaryotic acetyl-coenzyme A carboxylase by soraphen A, a macrocyclic polyketide natural product.
    Shen Y; Volrath SL; Weatherly SC; Elich TD; Tong L
    Mol Cell; 2004 Dec; 16(6):881-91. PubMed ID: 15610732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular mechanism for the regulation of human ACC2 through phosphorylation by AMPK.
    Cho YS; Lee JI; Shin D; Kim HT; Jung HY; Lee TG; Kang LW; Ahn YJ; Cho HS; Heo YS
    Biochem Biophys Res Commun; 2010 Jan; 391(1):187-92. PubMed ID: 19900410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression and characterization of recombinant fungal acetyl-CoA carboxylase and isolation of a soraphen-binding domain.
    Weatherly SC; Volrath SL; Elich TD
    Biochem J; 2004 May; 380(Pt 1):105-10. PubMed ID: 14766011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of the 500-kDa yeast acetyl-CoA carboxylase holoenzyme dimer.
    Wei J; Tong L
    Nature; 2015 Oct; 526(7575):723-7. PubMed ID: 26458104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insight into the molecular mechanism of yeast acetyl-coenzyme A carboxylase mutants F510I, N485G, I69E, E477R, and K73R resistant to soraphen A.
    Gao J; Liang L; Chen Q; Zhang L; Huang T
    J Comput Aided Mol Des; 2018 Apr; 32(4):547-557. PubMed ID: 29464467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of the carboxyltransferase domain of acetyl-coenzyme A carboxylase.
    Zhang H; Yang Z; Shen Y; Tong L
    Science; 2003 Mar; 299(5615):2064-7. PubMed ID: 12663926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and characterization of a BODIPY-labeled derivative of Soraphen A that binds to acetyl-CoA carboxylase.
    Raymer B; Kavana M; Price A; Wang B; Corcoran L; Kulathila R; Groarke J; Mann T
    Bioorg Med Chem Lett; 2009 May; 19(10):2804-7. PubMed ID: 19359168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of the carboxyltransferase domain of acetyl-coenzyme A carboxylase in complex with CP-640186.
    Zhang H; Tweel B; Li J; Tong L
    Structure; 2004 Sep; 12(9):1683-91. PubMed ID: 15341732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular basis for the inhibition of the carboxyltransferase domain of acetyl-coenzyme-A carboxylase by haloxyfop and diclofop.
    Zhang H; Tweel B; Tong L
    Proc Natl Acad Sci U S A; 2004 Apr; 101(16):5910-5. PubMed ID: 15079078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of the yeast ACC1 gene product (acetyl-CoA carboxylase) as the target of the polyketide fungicide soraphen A.
    Vahlensieck HF; Pridzun L; Reichenbach H; Hinnen A
    Curr Genet; 1994 Feb; 25(2):95-100. PubMed ID: 7916271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical inhibition of acetyl-CoA carboxylase induces growth arrest and cytotoxicity selectively in cancer cells.
    Beckers A; Organe S; Timmermans L; Scheys K; Peeters A; Brusselmans K; Verhoeven G; Swinnen JV
    Cancer Res; 2007 Sep; 67(17):8180-7. PubMed ID: 17804731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biotinoyl domain of human acetyl-CoA carboxylase: Structural insights into the carboxyl transfer mechanism.
    Lee CK; Cheong HK; Ryu KS; Lee JI; Lee W; Jeon YH; Cheong C
    Proteins; 2008 Aug; 72(2):613-24. PubMed ID: 18247344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acetyl-coenzyme A carboxylases: versatile targets for drug discovery.
    Tong L; Harwood HJ
    J Cell Biochem; 2006 Dec; 99(6):1476-88. PubMed ID: 16983687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Is dimerization required for the catalytic activity of bacterial biotin carboxylase?
    Shen Y; Chou CY; Chang GG; Tong L
    Mol Cell; 2006 Jun; 22(6):807-818. PubMed ID: 16793549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical inhibition of acetyl-CoA carboxylase suppresses self-renewal growth of cancer stem cells.
    Corominas-Faja B; Cuyàs E; Gumuzio J; Bosch-Barrera J; Leis O; Martin ÁG; Menendez JA
    Oncotarget; 2014 Sep; 5(18):8306-16. PubMed ID: 25246709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A unified molecular mechanism for the regulation of acetyl-CoA carboxylase by phosphorylation.
    Wei J; Zhang Y; Yu TY; Sadre-Bazzaz K; Rudolph MJ; Amodeo GA; Symington LS; Walz T; Tong L
    Cell Discov; 2016; 2():16044. PubMed ID: 27990296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-guided inhibitor design for human acetyl-coenzyme A carboxylase by interspecies active site conversion.
    Rajamohan F; Marr E; Reyes AR; Landro JA; Anderson MD; Corbett JW; Dirico KJ; Harwood JH; Tu M; Vajdos FF
    J Biol Chem; 2011 Dec; 286(48):41510-41519. PubMed ID: 21953464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism for the inhibition of the carboxyltransferase domain of acetyl-coenzyme A carboxylase by pinoxaden.
    Yu LP; Kim YS; Tong L
    Proc Natl Acad Sci U S A; 2010 Dec; 107(51):22072-7. PubMed ID: 21135213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new dominant selection marker for transformation of Pichia pastoris to soraphen A resistance.
    Wan H; Sjölinder M; Schairer HU; Leclerque A
    J Microbiol Methods; 2004 Apr; 57(1):33-9. PubMed ID: 15003686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A different mechanism for the inhibition of the carboxyltransferase domain of acetyl-coenzyme A carboxylase by tepraloxydim.
    Xiang S; Callaghan MM; Watson KG; Tong L
    Proc Natl Acad Sci U S A; 2009 Dec; 106(49):20723-7. PubMed ID: 19926852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.