BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1189 related articles for article (PubMed ID: 15611299)

  • 41. Alternative transcriptional initiation and splicing define the translational efficiencies of zebrafish mRNAs encoding eukaryotic initiation factor 4E.
    Fahrenkrug SC; Joshi B; Hackett PB; Jagus R
    Differentiation; 2000 Aug; 66(1):15-22. PubMed ID: 10997588
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Activity of the hepatitis A virus IRES requires association between the cap-binding translation initiation factor (eIF4E) and eIF4G.
    Ali IK; McKendrick L; Morley SJ; Jackson RJ
    J Virol; 2001 Sep; 75(17):7854-63. PubMed ID: 11483729
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Binding analyses for the interaction between plant virus genome-linked protein (VPg) and plant translational initiation factors.
    Miyoshi H; Suehiro N; Tomoo K; Muto S; Takahashi T; Tsukamoto T; Ohmori T; Natsuaki T
    Biochimie; 2006; 88(3-4):329-40. PubMed ID: 16300873
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The yeast nuclear cap binding complex can interact with translation factor eIF4G and mediate translation initiation.
    Fortes P; Inada T; Preiss T; Hentze MW; Mattaj IW; Sachs AB
    Mol Cell; 2000 Jul; 6(1):191-6. PubMed ID: 10949040
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The pioneer translation initiation complex is functionally distinct from but structurally overlaps with the steady-state translation initiation complex.
    Chiu SY; Lejeune F; Ranganathan AC; Maquat LE
    Genes Dev; 2004 Apr; 18(7):745-54. PubMed ID: 15059963
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Weak binding affinity of human 4EHP for mRNA cap analogs.
    Zuberek J; Kubacka D; Jablonowska A; Jemielity J; Stepinski J; Sonenberg N; Darzynkiewicz E
    RNA; 2007 May; 13(5):691-7. PubMed ID: 17369309
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Human eukaryotic translation initiation factor 4G (eIF4G) recruits mnk1 to phosphorylate eIF4E.
    Pyronnet S; Imataka H; Gingras AC; Fukunaga R; Hunter T; Sonenberg N
    EMBO J; 1999 Jan; 18(1):270-9. PubMed ID: 9878069
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Shiga toxins activate translational regulation pathways in intestinal epithelial cells.
    Colpoys WE; Cochran BH; Carducci TM; Thorpe CM
    Cell Signal; 2005 Jul; 17(7):891-9. PubMed ID: 15763431
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Meal feeding enhances formation of eIF4F in skeletal muscle: role of increased eIF4E availability and eIF4G phosphorylation.
    Vary TC; Lynch CJ
    Am J Physiol Endocrinol Metab; 2006 Apr; 290(4):E631-42. PubMed ID: 16263769
    [TBL] [Abstract][Full Text] [Related]  

  • 50. 4E binding proteins inhibit the translation factor eIF4E without folded structure.
    Fletcher CM; McGuire AM; Gingras AC; Li H; Matsuo H; Sonenberg N; Wagner G
    Biochemistry; 1998 Jan; 37(1):9-15. PubMed ID: 9453748
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cap-independent translation conferred by the 5' leader of tobacco etch virus is eukaryotic initiation factor 4G dependent.
    Gallie DR
    J Virol; 2001 Dec; 75(24):12141-52. PubMed ID: 11711605
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Manipulation of the host translation initiation complex eIF4F by DNA viruses.
    Walsh D
    Biochem Soc Trans; 2010 Dec; 38(6):1511-6. PubMed ID: 21118117
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Binding studies of eukaryotic initiation factor eIF4E with novel mRNA dinucleotide cap analogues.
    Zuberek J; Jemielity J; Stepinski J; Lewdorowicz M; Niedzwiecka A; Haber D; Stolarski R; Rhoads RE; Darzynkiewicz E
    Nucleosides Nucleotides Nucleic Acids; 2003; 22(5-8):1703-6. PubMed ID: 14565500
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Solution-based approach to study binding to the eIF4E cap-binding site using CD spectroscopy.
    Garvie CW
    Anal Biochem; 2013 Mar; 434(1):166-71. PubMed ID: 23219983
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Phosphorothioate analogs of m7GTP are enzymatically stable inhibitors of cap-dependent translation.
    Kowalska J; Lukaszewicz M; Zuberek J; Ziemniak M; Darzynkiewicz E; Jemielity J
    Bioorg Med Chem Lett; 2009 Apr; 19(7):1921-5. PubMed ID: 19269171
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Interaction of polyadenylate-binding protein with the eIF4G homologue PAIP enhances translation.
    Craig AW; Haghighat A; Yu AT; Sonenberg N
    Nature; 1998 Apr; 392(6675):520-3. PubMed ID: 9548260
    [TBL] [Abstract][Full Text] [Related]  

  • 57. After fertilization of sea urchin eggs, eIF4G is post-translationally modified and associated with the cap-binding protein eIF4E.
    Oulhen N; Salaün P; Cosson B; Cormier P; Morales J
    J Cell Sci; 2007 Feb; 120(Pt 3):425-34. PubMed ID: 17213333
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ectopic expression of eIF4E-transporter triggers the movement of eIF4E into P-bodies, inhibiting steady-state translation but not the pioneer round of translation.
    Lee HC; Cho H; Kim YK
    Biochem Biophys Res Commun; 2008 May; 369(4):1160-5. PubMed ID: 18343217
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Translational control by the poly(A) binding protein: a check for mRNA integrity].
    Svitkin YV; Sonenberg N
    Mol Biol (Mosk); 2006; 40(4):684-93. PubMed ID: 16913227
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nitric oxide mediates NMDA-induced persistent inhibition of protein synthesis through dephosphorylation of eukaryotic initiation factor 4E-binding protein 1 and eukaryotic initiation factor 4G proteolysis.
    Petegnief V; Font-Nieves M; Martín ME; Salinas M; Planas AM
    Biochem J; 2008 May; 411(3):667-77. PubMed ID: 18215131
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 60.