These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 15612048)
1. Reversible assembly of helical filaments by de novo designed minimalist peptides. Frost DW; Yip CM; Chakrabartty A Biopolymers; 2005; 80(1):26-33. PubMed ID: 15612048 [TBL] [Abstract][Full Text] [Related]
2. Removing an interhelical salt bridge abolishes coiled-coil formation in a de novo designed peptide. Meier M; Lustig A; Aebi U; Burkhard P J Struct Biol; 2002; 137(1-2):65-72. PubMed ID: 12064934 [TBL] [Abstract][Full Text] [Related]
3. Membrane binding and structure of de novo designed alpha-helical cationic coiled-coil-forming peptides. Vagt T; Zschörnig O; Huster D; Koksch B Chemphyschem; 2006 Jun; 7(6):1361-71. PubMed ID: 16680794 [TBL] [Abstract][Full Text] [Related]
4. Rational design of a reversible pH-responsive switch for peptide self-assembly. Zimenkov Y; Dublin SN; Ni R; Tu RS; Breedveld V; Apkarian RP; Conticello VP J Am Chem Soc; 2006 May; 128(21):6770-1. PubMed ID: 16719440 [TBL] [Abstract][Full Text] [Related]
5. Toward the development of peptide nanofilaments and nanoropes as smart materials. Wagner DE; Phillips CL; Ali WM; Nybakken GE; Crawford ED; Schwab AD; Smith WF; Fairman R Proc Natl Acad Sci U S A; 2005 Sep; 102(36):12656-61. PubMed ID: 16129839 [TBL] [Abstract][Full Text] [Related]
6. Sequence and structural duality: designing peptides to adopt two stable conformations. Pandya MJ; Cerasoli E; Joseph A; Stoneman RG; Waite E; Woolfson DN J Am Chem Soc; 2004 Dec; 126(51):17016-24. PubMed ID: 15612740 [TBL] [Abstract][Full Text] [Related]
7. Intramolecular charge interactions as a tool to control the coiled-coil-to-amyloid transformation. Pagel K; Wagner SC; Rezaei Araghi R; von Berlepsch H; Böttcher C; Koksch B Chemistry; 2008; 14(36):11442-51. PubMed ID: 19016556 [TBL] [Abstract][Full Text] [Related]
8. Self assembly of coiled-coil peptide-porphyrin complexes. Kokona B; Kim AM; Roden RC; Daniels JP; Pepe-Mooney BJ; Kovaric BC; de Paula JC; Johnson KA; Fairman R Biomacromolecules; 2009 Jun; 10(6):1454-9. PubMed ID: 19374349 [TBL] [Abstract][Full Text] [Related]
9. Protein-like molecular architecture: biomaterial applications for inducing cellular receptor binding and signal transduction. Fields GB; Lauer JL; Dori Y; Forns P; Yu YC; Tirrell M Biopolymers; 1998; 47(2):143-51. PubMed ID: 9703769 [TBL] [Abstract][Full Text] [Related]
10. Thermally reversible hydrogels via intramolecular folding and consequent self-assembly of a de novo designed peptide. Pochan DJ; Schneider JP; Kretsinger J; Ozbas B; Rajagopal K; Haines L J Am Chem Soc; 2003 Oct; 125(39):11802-3. PubMed ID: 14505386 [TBL] [Abstract][Full Text] [Related]
11. NMR solution structure of a highly stable de novo heterodimeric coiled-coil. Lindhout DA; Litowski JR; Mercier P; Hodges RS; Sykes BD Biopolymers; 2004 Dec; 75(5):367-75. PubMed ID: 15457434 [TBL] [Abstract][Full Text] [Related]
12. In situ adsorption studies of a 14-amino acid leucine-lysine peptide onto hydrophobic polystyrene and hydrophilic silica surfaces using quartz crystal microbalance, atomic force microscopy, and sum frequency generation vibrational spectroscopy. Mermut O; Phillips DC; York RL; McCrea KR; Ward RS; Somorjai GA J Am Chem Soc; 2006 Mar; 128(11):3598-607. PubMed ID: 16536533 [TBL] [Abstract][Full Text] [Related]
13. Identification of stable helical bundles from a combinatorial library of amphipathic peptides. Boon CL; Frost D; Chakrabartty A Biopolymers; 2004; 76(3):244-57. PubMed ID: 15148684 [TBL] [Abstract][Full Text] [Related]
14. Conformational preferences of a short Aib/Ala-based water-soluble peptide as a function of temperature. Banerjee R; Chattopadhyay S; Basu G Proteins; 2009 Jul; 76(1):184-200. PubMed ID: 19137603 [TBL] [Abstract][Full Text] [Related]
15. Secondary conformation of short lysine- and leucine-rich peptides assessed by optical spectroscopies: effect of chain length, concentration, solvent, and time. Hernández B; Boukhalfa-Heniche FZ; Seksek O; Coïc YM; Ghomi M Biopolymers; 2006 Jan; 81(1):8-19. PubMed ID: 16134172 [TBL] [Abstract][Full Text] [Related]
16. Effects of the sequence and size of non-polar residues on self-assembly of amphiphilic peptides. Wang K; Keasling JD; Muller SJ Int J Biol Macromol; 2005 Sep; 36(4):232-40. PubMed ID: 16055181 [TBL] [Abstract][Full Text] [Related]
17. D-periodic collagen-mimetic microfibers. Rele S; Song Y; Apkarian RP; Qu Z; Conticello VP; Chaikof EL J Am Chem Soc; 2007 Nov; 129(47):14780-7. PubMed ID: 17985903 [TBL] [Abstract][Full Text] [Related]
18. One-dimensional self-assembly of a rational designed beta-structure peptide. Wang C; Huang L; Wang L; Hong Y; Sha Y Biopolymers; 2007 May; 86(1):23-31. PubMed ID: 17216631 [TBL] [Abstract][Full Text] [Related]
19. Understanding self-assembled amphiphilic peptide supramolecular structures from primary structure helix propensity. Baumann MK; Textor M; Reimhult E Langmuir; 2008 Aug; 24(15):7645-7. PubMed ID: 18597507 [TBL] [Abstract][Full Text] [Related]
20. Specific control of peptide assembly with combined hydrophilic and hydrophobic interfaces. Schnarr NA; Kennan AJ J Am Chem Soc; 2003 Jan; 125(3):667-71. PubMed ID: 12526666 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]