These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 15612549)

  • 1. [Calculation of local Hurst exponents in the Ca(2+)-activated K(+)-channel dwell time].
    Brazhe AR; Astashev ME; Maksimov GV; Kazachenko VN; Rubin AB
    Biofizika; 2004; 49(6):1075-83. PubMed ID: 15612549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chaotic model and memory in single calcium-activated potassium channel kinetics.
    Bandeira HT; Barbosa CT; De Oliveira RA; Aguiar JF; Nogueira RA
    Chaos; 2008 Sep; 18(3):033136. PubMed ID: 19045474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hurst analysis applied to the study of single calcium-activated potassium channel kinetics.
    Varanda WA; Liebovitch LS; Figueiroa JN; Nogueira RA
    J Theor Biol; 2000 Oct; 206(3):343-53. PubMed ID: 10988020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Fractal properies of gating in potential-dependent K+-channels in Lymnaea stagnalis neurons].
    Kazachenko VN; Kochetkov KV; Astashev ME; Grinevich AA
    Biofizika; 2004; 49(5):852-65. PubMed ID: 15526471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Study of fractal properties of single ionic channel gating mechanism by the fast Fourier transform].
    Kazachenko VN; Kochetkov KV; Aslanidi OV; Grinevich AA
    Biofizika; 2001; 46(6):1062-70. PubMed ID: 11771279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple facets of maxi-k+ channels: the heme connection.
    López-Barneo J; Castellano A
    J Gen Physiol; 2005 Jul; 126(1):1-5. PubMed ID: 15955878
    [No Abstract]   [Full Text] [Related]  

  • 7. Self-organized critical gating of ion channels: on the origin of long-term memory in dwell time series.
    Brazhe AR; Maksimov GV
    Chaos; 2006 Sep; 16(3):033129. PubMed ID: 17014234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Compared Markov with fractal models by using single-channel experimental and simulation data].
    Lan T; Wu H; Lin J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Oct; 23(5):923-8. PubMed ID: 17121323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wavelet-based multifractal analysis of fMRI time series.
    Shimizu Y; Barth M; Windischberger C; Moser E; Thurner S
    Neuroimage; 2004 Jul; 22(3):1195-202. PubMed ID: 15219591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of residual Ca2+ on the stochastic gating of Ca2+-regulated Ca2+ channel models.
    Mazzag B; Tignanelli CJ; Smith GD
    J Theor Biol; 2005 Jul; 235(1):121-50. PubMed ID: 15833318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Delayed-rectifier (KV2.1) regulation of pancreatic beta-cell calcium responses to glucose: inhibitor specificity and modeling.
    Tamarina NA; Kuznetsov A; Fridlyand LE; Philipson LH
    Am J Physiol Endocrinol Metab; 2005 Oct; 289(4):E578-85. PubMed ID: 16014354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The dynamics of luminal depletion and the stochastic gating of Ca2+-activated Ca2+ channels and release sites.
    Huertas MA; Smith GD
    J Theor Biol; 2007 May; 246(2):332-54. PubMed ID: 17286986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structures of a ligand-free MthK gating ring: insights into the ligand gating mechanism of K+ channels.
    Ye S; Li Y; Chen L; Jiang Y
    Cell; 2006 Sep; 126(6):1161-73. PubMed ID: 16990139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterisation of large-conductance calcium-activated potassium channels (BK(Ca)) in human NT2-N cells.
    Chapman H; Piggot C; Andrews PW; Wann KT
    Brain Res; 2007 Jan; 1129(1):15-25. PubMed ID: 17156763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling K(ATP) channel gating and its regulation.
    Proks P; Ashcroft FM
    Prog Biophys Mol Biol; 2009 Jan; 99(1):7-19. PubMed ID: 18983870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sodium cyanate-induced opening of calcium-activated potassium currents in hippocampal neuron-derived H19-7 cells.
    Huang CW; Huang CC; Huang MH; Wu SN; Hsieh YJ
    Neurosci Lett; 2005 Mar; 377(2):110-4. PubMed ID: 15740847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accessory Kvbeta1 subunits differentially modulate the functional expression of voltage-gated K+ channels in mouse ventricular myocytes.
    Aimond F; Kwak SP; Rhodes KJ; Nerbonne JM
    Circ Res; 2005 Mar; 96(4):451-8. PubMed ID: 15662035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of Ca2+-activated K+ channels in duodenal mucosal ion transport and bicarbonate secretion.
    Dong H; Smith A; Hovaida M; Chow JY
    Am J Physiol Gastrointest Liver Physiol; 2006 Dec; 291(6):G1120-8. PubMed ID: 16763288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tuning the mechanosensitivity of a BK channel by changing the linker length.
    Zhao H; Sokabe M
    Cell Res; 2008 Aug; 18(8):871-8. PubMed ID: 18663377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The beta 1 subunit of L-type voltage-gated Ca2+ channels independently binds to and inhibits the gating of large-conductance Ca2+-activated K+ channels.
    Zou S; Jha S; Kim EY; Dryer SE
    Mol Pharmacol; 2008 Feb; 73(2):369-78. PubMed ID: 17989350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.