BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 15613311)

  • 21. Sequences in gibbon ape leukemia virus envelope that confer sensitivity to HIV-1 accessory protein Vpu.
    Janaka SK; Lucas TM; Johnson MC
    J Virol; 2011 Nov; 85(22):11945-54. PubMed ID: 21917962
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of HIV-1 vectors with gammaretrovirus envelope glycoproteins produced from stable packaging cells.
    Strang BL; Ikeda Y; Cosset FL; Collins MK; Takeuchi Y
    Gene Ther; 2004 Apr; 11(7):591-8. PubMed ID: 14724689
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Direct interaction between the envelope and matrix proteins of HIV-1.
    Cosson P
    EMBO J; 1996 Nov; 15(21):5783-8. PubMed ID: 8918455
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A hyperfusogenic gibbon ape leukemia envelope glycoprotein: targeting of a cytotoxic gene by ligand display.
    Fielding AK; Chapel-Fernandes S; Chadwick MP; Bullough FJ; Cosset FL; Russell SJ
    Hum Gene Ther; 2000 Apr; 11(6):817-26. PubMed ID: 10779159
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simian sarcoma-associated virus fails to infect Chinese hamster cells despite the presence of functional gibbon ape leukemia virus receptors.
    Ting YT; Wilson CA; Farrell KB; Chaudry GJ; Eiden MV
    J Virol; 1998 Dec; 72(12):9453-8. PubMed ID: 9811678
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An essential role for the His-8 residue of the SDF-1alpha-chimeric, tropism-redirected Env protein of the Moloney murine leukemia virus in regulating postbinding fusion events.
    Katane M; Fujita R; Takao E; Kubo Y; Aoki Y; Amanuma H
    J Gene Med; 2004 Mar; 6(3):260-7. PubMed ID: 15026987
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mutational analysis of the conserved cysteine residues in the simian immunodeficiency virus matrix protein.
    González SA; Affranchino JL
    Virology; 1995 Jul; 210(2):501-7. PubMed ID: 7618287
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Expression of human immunodeficiency virus type 1 Gag protein precursor and envelope proteins from a vesicular stomatitis virus recombinant: high-level production of virus-like particles containing HIV envelope.
    Haglund K; Forman J; Kräusslich HG; Rose JK
    Virology; 2000 Mar; 268(1):112-21. PubMed ID: 10683333
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assembly of SIV virus-like particles containing envelope proteins using a baculovirus expression system.
    Yamshchikov GV; Ritter GD; Vey M; Compans RW
    Virology; 1995 Dec; 214(1):50-8. PubMed ID: 8525638
    [TBL] [Abstract][Full Text] [Related]  

  • 30. HIV-1 Vpr-chloramphenicol acetyltransferase fusion proteins: sequence requirement for virion incorporation and analysis of antiviral effect.
    Yao XJ; Kobinger G; Dandache S; Rougeau N; Cohen E
    Gene Ther; 1999 Sep; 6(9):1590-9. PubMed ID: 10490769
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mapping of the human immunodeficiency virus type 2 envelope glycoprotein CD4 binding region and fusion domain with truncated proteins expressed by recombinant vaccinia viruses.
    Otteken A; Voss G; Hunsmann G
    Virology; 1993 May; 194(1):37-43. PubMed ID: 8480426
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Episodic Diversifying Selection Shaped the Genomes of Gibbon Ape Leukemia Virus and Related Gammaretroviruses.
    Alfano N; Kolokotronis SO; Tsangaras K; Roca AL; Xu W; Eiden MV; Greenwood AD
    J Virol; 2016 Feb; 90(4):1757-72. PubMed ID: 26637454
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An anti-human immunodeficiency virus multiple antigen peptide encompassing the cleavage region of the env precursor interferes with membrane fusion at a post-CD4 binding step.
    Barbouche R; Decroly E; Kieny MP; Fenouillet E
    Virology; 2000 Jul; 273(1):169-77. PubMed ID: 10891419
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recruitment of the adaptor protein 2 complex by the human immunodeficiency virus type 2 envelope protein is necessary for high levels of virus release.
    Noble B; Abada P; Nunez-Iglesias J; Cannon PM
    J Virol; 2006 Mar; 80(6):2924-32. PubMed ID: 16501101
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modification of virus infectivity by cytoplasmic tail of HIV-1 TM protein.
    Iwatani Y; Ueno T; Nishimura A; Zhang X; Hattori T; Ishimoto A; Ito M; Sakai H
    Virus Res; 2001 Apr; 74(1-2):75-87. PubMed ID: 11226576
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Truncation of the human immunodeficiency virus type 1 envelope glycoprotein allows efficient pseudotyping of Moloney murine leukemia virus particles and gene transfer into CD4+ cells.
    Mammano F; Salvatori F; Indraccolo S; De Rossi A; Chieco-Bianchi L; Göttlinger HG
    J Virol; 1997 Apr; 71(4):3341-5. PubMed ID: 9060707
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Jaagsiekte sheep retrovirus envelope efficiently pseudotypes human immunodeficiency virus type 1-based lentiviral vectors.
    Liu SL; Halbert CL; Miller AD
    J Virol; 2004 Mar; 78(5):2642-7. PubMed ID: 14963173
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficient pseudotyping of murine leukemia virus particles with chimeric human foamy virus envelope proteins.
    Lindemann D; Bock M; Schweizer M; Rethwilm A
    J Virol; 1997 Jun; 71(6):4815-20. PubMed ID: 9151877
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ecotropic HIV-1 vectors pseudotyped with R-peptide-deleted envelope protein variants reveal improved gene transfer efficiencies.
    Tschorn N; Söhngen C; Berg K; Stitz J
    Virology; 2022 Dec; 577():124-130. PubMed ID: 36343471
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of R-peptides in envelope proteins of C-type retroviruses.
    Bobkova M; Stitz J; Engelstädter M; Cichutek K; Buchholz CJ
    J Gen Virol; 2002 Sep; 83(Pt 9):2241-2246. PubMed ID: 12185279
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.