BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 15613380)

  • 1. Surface conditioning of 316LVM slotted tube cardiovascular stents.
    Raval A; Choubey A; Engineer C; Kothwala D
    J Biomater Appl; 2005 Jan; 19(3):197-213. PubMed ID: 15613380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal processing and characterization of 316LVM cardiovascular stent.
    Verma A; Choubey A; Raval A; Kothwala D
    Biomed Mater Eng; 2006; 16(6):381-95. PubMed ID: 17119277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of biocompatibility of 316LVM stainless steel by cyclic potentiodynamic passivation.
    Shahryari A; Omanovic S; Szpunar JA
    J Biomed Mater Res A; 2009 Jun; 89(4):1049-62. PubMed ID: 18478556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [A long term accelerating corrosion fatigue texting of coronary stents in vitro].
    Wang J; Li J; Tang J; Lu S; Xi T
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Apr; 25(2):398-401. PubMed ID: 18610630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Measurement of low corrosion rate of coronary stents-made of 316L and 317L stainless steel].
    Liang C; Guo L; Chen W
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Aug; 23(4):829-31. PubMed ID: 17002118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stability of passivated 316L stainless steel oxide films for cardiovascular stents.
    Shih CC; Shih CM; Chou KY; Lin SJ; Su YY
    J Biomed Mater Res A; 2007 Mar; 80(4):861-73. PubMed ID: 17072844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The importance of annealing 316 LVM stents.
    Meyer-Kobbe C; Hinrichs BH
    Med Device Technol; 2003; 14(1):20-5. PubMed ID: 12974121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The use of alkanethiol self-assembled monolayers on 316L stainless steel for coronary artery stent nanomedicine applications: an oxidative and in vitro stability study.
    Mahapatro A; Johnson DM; Patel DN; Feldman MD; Ayon AA; Agrawal CM
    Nanomedicine; 2006 Sep; 2(3):182-90. PubMed ID: 17292141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Study on electrochemical mechanism of coronary stent used austenitic stainless steel in flowing artificial body fluid].
    Liang C; Guo L; Chen W; Wang H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Aug; 22(4):730-3. PubMed ID: 16156260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling of size dependent failure in cardiovascular stent struts under tension and bending.
    Harewood FJ; McHugh PE
    Ann Biomed Eng; 2007 Sep; 35(9):1539-53. PubMed ID: 17503185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of passivation and electropolishing on the performance of medical grade stainless steels in static and fatigue loading.
    Weldon LM; McHugh PE; Carroll W; Costello E; O'Bradaigh C
    J Mater Sci Mater Med; 2005 Feb; 16(2):107-17. PubMed ID: 15744598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Corrosion resistance studies on grain-boundary etched drug-eluting stents.
    Rettig R; Kunze J; Stöver M; Wintermantel E; Virtanen S
    J Mater Sci Mater Med; 2007 Jul; 18(7):1377-87. PubMed ID: 17277971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Materials characterisation of Biomedical tents.
    Cormia RD; Craig AY
    Med Device Technol; 2005 Nov; 16(9):16-8, 20. PubMed ID: 16438443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Static coefficient of friction between stainless steel and PMMA used in cemented hip and knee implants.
    Nuño N; Groppetti R; Senin N
    Clin Biomech (Bristol, Avon); 2006 Nov; 21(9):956-62. PubMed ID: 16860449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions between stainless steel, shear stress, and monocytes.
    Messer RL; Mickalonis J; Lewis JB; Omata Y; Davis CM; Brown Y; Wataha JC
    J Biomed Mater Res A; 2008 Oct; 87(1):229-35. PubMed ID: 18092353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Effect of fibrinogen on corrosion behavior of stainless steel in artificial blood solution].
    Guo L; Liang C; Guo H; Chen W
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2001 Dec; 18(4):565-7. PubMed ID: 11791309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electropolishing of stainless steels in a choline chloride based ionic liquid: an electrochemical study with surface characterisation using SEM and atomic force microscopy.
    Abbott AP; Capper G; McKenzie KJ; Glidle A; Ryder KS
    Phys Chem Chem Phys; 2006 Sep; 8(36):4214-21. PubMed ID: 16971989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact on the thrombogenicity of surface oxide properties of 316l stainless steel for biomedical applications.
    Shih CC; Shih CM; Su YY; Lin SJ
    J Biomed Mater Res A; 2003 Dec; 67(4):1320-8. PubMed ID: 14624519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stainless and shape memory alloy coronary stents: a computational study on the interaction with the vascular wall.
    Migliavacca F; Petrini L; Massarotti P; Schievano S; Auricchio F; Dubini G
    Biomech Model Mechanobiol; 2004 Jun; 2(4):205-17. PubMed ID: 15029511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differences of platelet adhesion and thrombus activation on amorphous silicon carbide, magnesium alloy, stainless steel, and cobalt chromium stent surfaces.
    Hansi C; Arab A; Rzany A; Ahrens I; Bode C; Hehrlein C
    Catheter Cardiovasc Interv; 2009 Mar; 73(4):488-96. PubMed ID: 19235237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.