These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 15613380)

  • 21. [Study of a new medical stainless steel].
    Ren Y; Yang K; Zhang B; Yang H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Oct; 23(5):1101-3, 1122. PubMed ID: 17121363
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Failure analysis of explanted sternal wires.
    Shih CM; Su YY; Lin SJ; Shih CC
    Biomaterials; 2005 May; 26(14):2053-9. PubMed ID: 15576179
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Corrosion and haemocompatibility of 316L stainless steel with electroplated Rh film].
    Liu J; Yang D; Liang C; Guo L; Kong L; Cai Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2001 Jun; 18(2):169-72. PubMed ID: 11450526
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparing coronary stent material performance on a common geometric platform through simulated bench testing.
    Grogan JA; Leen SB; McHugh PE
    J Mech Behav Biomed Mater; 2012 Aug; 12():129-38. PubMed ID: 22705476
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Initial exploration of Ti-Ta, Ti-Ta-Ir and Ti-Ir alloys: Candidate materials for coronary stents.
    O'Brien B; Stinson J; Carroll W
    Acta Biomater; 2008 Sep; 4(5):1553-9. PubMed ID: 18396116
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The influence of electropolishing on the corrosion resistance of 316L stainless steel.
    Sutow EJ
    J Biomed Mater Res; 1980 Sep; 14(5):587-95. PubMed ID: 7349665
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanoscaled periodic surface structures of medical stainless steel and their effect on osteoblast cells.
    Elter P; Sickel F; Ewald A
    Acta Biomater; 2009 Jun; 5(5):1468-73. PubMed ID: 19250893
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrochemical polishing of 316L stainless steel slotted tube coronary stents.
    Zhao H; Van Humbeeck J; Sohier J; De Scheerder I
    J Mater Sci Mater Med; 2002 Oct; 13(10):911-6. PubMed ID: 15348183
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vitro biocompatibility of plasma-aided surface-modified 316L stainless steel for intracoronary stents.
    Bayram C; Mizrak AK; Aktürk S; Kurşaklioğlu H; Iyisoy A; Ifran A; Denkbaş EB
    Biomed Mater; 2010 Oct; 5(5):055007. PubMed ID: 20844318
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Coronary stent strut size dependent stress-strain response investigated using micromechanical finite element models.
    Savage P; O'Donnell BP; McHugh PE; Murphy BP; Quinn DF
    Ann Biomed Eng; 2004 Feb; 32(2):202-11. PubMed ID: 15008368
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanosized controlled surface pretreatment of biometallic alloy 316L stainless steel.
    Abdel-Fattah TM; Loftis D; Mahapatro A
    J Biomed Nanotechnol; 2011 Dec; 7(6):794-800. PubMed ID: 22416578
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The influence of grain size on the ductility of micro-scale stainless steel stent struts.
    Murphy BP; Cuddy H; Harewood FJ; Connolley T; McHugh PE
    J Mater Sci Mater Med; 2006 Jan; 17(1):1-6. PubMed ID: 16389466
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A platinum-chromium steel for cardiovascular stents.
    O'Brien BJ; Stinson JS; Larsen SR; Eppihimer MJ; Carroll WM
    Biomaterials; 2010 May; 31(14):3755-61. PubMed ID: 20181394
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chemical, corrosion and topographical analysis of stainless steel implants after different implantation periods.
    Chrzanowski W; Armitage DA; Knowles JC; Szade J; Korlacki W; Marciniak J
    J Biomater Appl; 2008 Jul; 23(1):51-71. PubMed ID: 18467745
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Surface mechanical properties, corrosion resistance, and cytocompatibility of nitrogen plasma-implanted nickel-titanium alloys: a comparative study with commonly used medical grade materials.
    Yeung KW; Poon RW; Chu PK; Chung CY; Liu XY; Lu WW; Chan D; Chan SC; Luk KD; Cheung KM
    J Biomed Mater Res A; 2007 Aug; 82(2):403-14. PubMed ID: 17295246
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fatigue and fracture in materials used for micro-scale biomedical components.
    Wiersma S; Dolan F; Taylor D
    Biomed Mater Eng; 2006; 16(2):137-46. PubMed ID: 16477122
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A stainless steel bracket for orthodontic application.
    Oh KT; Choo SU; Kim KM; Kim KN
    Eur J Orthod; 2005 Jun; 27(3):237-44. PubMed ID: 15947222
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of a new niobium-based alloy for vascular stent applications.
    O'Brien B; Stinson J; Carroll W
    J Mech Behav Biomed Mater; 2008 Oct; 1(4):303-12. PubMed ID: 19627795
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Corrosion of orthodontic pliers using different sterilization procedures.
    Wichelhaus A; Brauchle G; Mertmann M; Sander FG
    J Orofac Orthop; 2004 Nov; 65(6):501-11. PubMed ID: 15570408
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An investigation into the effect of surface roughness of stainless steel on human umbilical vein endothelial cell gene expression.
    McLucas E; Moran MT; Rochev Y; Carroll WM; Smith TJ
    Endothelium; 2006; 13(1):35-41. PubMed ID: 16885065
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.