These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 15613638)
61. A genetic screen to identify sequences that mediate protein oligomerization in Escherichia coli. Jappelli R; Brenner S Biochem Biophys Res Commun; 1999 Dec; 266(1):243-7. PubMed ID: 10581196 [TBL] [Abstract][Full Text] [Related]
62. Spatial two-photon fluorescence cross-correlation spectroscopy for controlling molecular transport in microfluidic structures. Dittrich PS; Schwille P Anal Chem; 2002 Sep; 74(17):4472-9. PubMed ID: 12236358 [TBL] [Abstract][Full Text] [Related]
63. Direct observation of downhill folding of lambda-repressor in a microfluidic mixer. DeCamp SJ; Naganathan AN; Waldauer SA; Bakajin O; Lapidus LJ Biophys J; 2009 Sep; 97(6):1772-7. PubMed ID: 19751683 [TBL] [Abstract][Full Text] [Related]
64. Incorporation of anthraquinonyl group into lambda-Cro repressor protein for strand- and position-specific photocleavage of double-stranded DNA. Sasaki H; Ikeda K; Suzuki M; Ninomiya K; Sisido M Biopolymers; 2004; 76(1):21-6. PubMed ID: 14997471 [TBL] [Abstract][Full Text] [Related]
65. Dissociation of a native dimer to a molten globule monomer. Effects of pressure and dilution on the association equilibrium of arc repressor. Silva JL; Silveira CF; Correia Júnior A; Pontes L J Mol Biol; 1992 Jan; 223(2):545-55. PubMed ID: 1738163 [TBL] [Abstract][Full Text] [Related]
67. Why is protein folding so fast? Baldwin RL Proc Natl Acad Sci U S A; 1996 Apr; 93(7):2627-8. PubMed ID: 8610091 [No Abstract] [Full Text] [Related]
68. The preferred substrate for RecA-mediated cleavage of bacteriophage 434 repressor is the DNA-bound dimer. Pawlowski DR; Koudelka GB J Bacteriol; 2004 Jan; 186(1):1-7. PubMed ID: 14679217 [TBL] [Abstract][Full Text] [Related]
69. Contribution of a buried hydrogen bond to lambda repressor folding kinetics. Myers JK; Oas TG Biochemistry; 1999 May; 38(21):6761-8. PubMed ID: 10346896 [TBL] [Abstract][Full Text] [Related]
70. Structure and stability of monomeric lambda repressor: NMR evidence for two-state folding. Huang GS; Oas TG Biochemistry; 1995 Mar; 34(12):3884-92. PubMed ID: 7696251 [TBL] [Abstract][Full Text] [Related]
71. Variations in the fast folding rates of the lambda-repressor: a hybrid molecular dynamics study. Pogorelov TV; Luthey-Schulten Z Biophys J; 2004 Jul; 87(1):207-14. PubMed ID: 15240458 [TBL] [Abstract][Full Text] [Related]
72. Methionine oxidation of monomeric lambda repressor: the denatured state ensemble under nondenaturing conditions. Chugha P; Sage HJ; Oas TG Protein Sci; 2006 Mar; 15(3):533-42. PubMed ID: 16452618 [TBL] [Abstract][Full Text] [Related]
73. Plasmonic antennas and zero-mode waveguides to enhance single molecule fluorescence detection and fluorescence correlation spectroscopy toward physiological concentrations. Punj D; Ghenuche P; Moparthi SB; de Torres J; Grigoriev V; Rigneault H; Wenger J Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2014; 6(3):268-82. PubMed ID: 24616447 [TBL] [Abstract][Full Text] [Related]
74. Methods for separating nucleation and growth in protein crystallisation. Chayen NE Prog Biophys Mol Biol; 2005 Jul; 88(3):329-37. PubMed ID: 15652248 [TBL] [Abstract][Full Text] [Related]
75. An operator-induced conformational change in the C-terminal domain of the lambda repressor. Saha R; Banik U; Bandopadhyay S; Mandal NC; Bhattacharyya B; Roy S J Biol Chem; 1992 Mar; 267(9):5862-7. PubMed ID: 1532575 [TBL] [Abstract][Full Text] [Related]
76. Fluorescence correlation spectroscopy: molecular complexing in solution and in living cells. Bulseco DA; Wolf DE Methods Cell Biol; 2013; 114():489-524. PubMed ID: 23931520 [TBL] [Abstract][Full Text] [Related]