BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 15614476)

  • 1. Changes in the centrin and microtubule cytoskeletons after metaphase arrest of the Chlamydomonas reinhardtii met1 mutant.
    Harper JD; Salisbury JL; John PC; Koutoulis A
    Protoplasma; 2004 Dec; 224(3-4):159-65. PubMed ID: 15614476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Centrin deficiency in Chlamydomonas causes defects in basal body replication, segregation and maturation.
    Koblenz B; Schoppmeier J; Grunow A; Lechtreck KF
    J Cell Sci; 2003 Jul; 116(Pt 13):2635-46. PubMed ID: 12746491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gamma-tubulin localization changes from discrete polar organizers to anastral spindles and phragmoplasts in mitosis of Marchantia polymorpha L.
    Brown RC; Lemmon BE; Horio T
    Protoplasma; 2004 Dec; 224(3-4):187-93. PubMed ID: 15614479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of organelles in the mitotic spindles of living cells: membrane and microtubule interactions.
    Waterman-Storer CM; Sanger JW; Sanger JM
    Cell Motil Cytoskeleton; 1993; 26(1):19-39. PubMed ID: 8106173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo localization of centrin in the green alga Chlamydomonas reinhardtii.
    Ruiz-Binder NE; Geimer S; Melkonian M
    Cell Motil Cytoskeleton; 2002 May; 52(1):43-55. PubMed ID: 11977082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elongation of centriolar microtubule triplets contributes to the formation of the mitotic spindle in gamma-tubulin-depleted cells.
    Raynaud-Messina B; Mazzolini L; Moisand A; Cirinesi AM; Wright M
    J Cell Sci; 2004 Nov; 117(Pt 23):5497-507. PubMed ID: 15479719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fertilization in Drosophila melanogaster: centrosome inheritance and organization of the first mitotic spindle.
    Callaini G; Riparbelli MG
    Dev Biol; 1996 Jun; 176(2):199-208. PubMed ID: 8660861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Function of donor cell centrosome in intraspecies and interspecies nuclear transfer embryos.
    Zhong ZS; Zhang G; Meng XQ; Zhang YL; Chen DY; Schatten H; Sun QY
    Exp Cell Res; 2005 May; 306(1):35-46. PubMed ID: 15878330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An insertional mutant of Chlamydomonas reinhardtii with defective microtubule positioning.
    Horst CJ; Fishkind DJ; Pazour GJ; Witman GB
    Cell Motil Cytoskeleton; 1999 Oct; 44(2):143-54. PubMed ID: 10506749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The rhizoplast of chrysomonads, a basal body-nucleus connector that polarises the dividing spindle.
    Brugerolle G; Mignot JP
    Protoplasma; 2003 Sep; 222(1-2):13-21. PubMed ID: 14513307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Centrosome injury in cells infected with human cytomegalovirus.
    Bystrevskaya VB; Lobova TV; Smirnov VN; Makarova NE; Kushch AA
    J Struct Biol; 1997 Oct; 120(1):52-60. PubMed ID: 9356291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulated targeting of GFP-AtMAP65-1 to central spindle microtubules during division.
    Mao G; Chan J; Calder G; Doonan JH; Lloyd CW
    Plant J; 2005 Aug; 43(4):469-78. PubMed ID: 16098102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleus-basal body connector in Chlamydomonas: evidence for a role in basal body segregation and against essential roles in mitosis or in determining cell polarity.
    Wright RL; Adler SA; Spanier JG; Jarvik JW
    Cell Motil Cytoskeleton; 1989; 14(4):516-26. PubMed ID: 2696598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GFP as a tool for the analysis of proteins in the flagellar basal apparatus of Chlamydomonas.
    Schoppmeier J; Mages W; Lechtreck KF
    Cell Motil Cytoskeleton; 2005 Aug; 61(4):189-200. PubMed ID: 15940689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Centrin and the cytoskeleton of the protist Holomastigotoides.
    Lingle WL; Salisbury JL
    Cell Motil Cytoskeleton; 1997; 36(4):377-90. PubMed ID: 9096959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MICROTUBULE ORGANIZATION 1 regulates structure and function of microtubule arrays during mitosis and cytokinesis in the Arabidopsis root.
    Kawamura E; Himmelspach R; Rashbrooke MC; Whittington AT; Gale KR; Collings DA; Wasteneys GO
    Plant Physiol; 2006 Jan; 140(1):102-14. PubMed ID: 16377747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Actin dynamics during the cell cycle in Chlamydomonas reinhardtii.
    Harper JD; McCurdy DW; Sanders MA; Salisbury JL; John PC
    Cell Motil Cytoskeleton; 1992; 22(2):117-26. PubMed ID: 1378775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Okadaic acid induces spindle lengthening and disrupts the interaction of microtubules with the kinetochores in metaphase II-arrested mouse oocytes.
    de Pennart H; Verlhac MH; Cibert C; Santa Maria A; Maro B
    Dev Biol; 1993 May; 157(1):170-81. PubMed ID: 8387033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of microtubule stability and mitotic progression by survivin.
    Giodini A; Kallio MJ; Wall NR; Gorbsky GJ; Tognin S; Marchisio PC; Symons M; Altieri DC
    Cancer Res; 2002 May; 62(9):2462-7. PubMed ID: 11980633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microtubule distribution and reorganization in the first cell cycle of fertilized eggs of Lytechinus pictus.
    Hollenbeck PJ; Cande WZ
    Eur J Cell Biol; 1985 May; 37():140-8. PubMed ID: 3896803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.