BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 15614534)

  • 21. Innovative metabolic pathway design for efficient l-glutamate production by suppressing CO2 emission.
    Chinen A; Kozlov YI; Hara Y; Izui H; Yasueda H
    J Biosci Bioeng; 2007 Mar; 103(3):262-9. PubMed ID: 17434430
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The transcriptional regulatory repertoire of Corynebacterium glutamicum: reconstruction of the network controlling pathways involved in lysine and glutamate production.
    Brinkrolf K; Schröder J; Pühler A; Tauch A
    J Biotechnol; 2010 Sep; 149(3):173-82. PubMed ID: 19963020
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Serial flux mapping of Corynebacterium glutamicum during fed-batch L-lysine production using the sensor reactor approach.
    Drysch A; El Massaoudi M; Wiechert W; de Graaf AA; Takors R
    Biotechnol Bioeng; 2004 Mar; 85(5):497-505. PubMed ID: 14760690
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gene expression of Corynebacterium glutamicum in response to the conditions inducing glutamate overproduction.
    Kataoka M; Hashimoto KI; Yoshida M; Nakamatsu T; Horinouchi S; Kawasaki H
    Lett Appl Microbiol; 2006 May; 42(5):471-6. PubMed ID: 16620205
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A game with many players: control of gdh transcription in Corynebacterium glutamicum.
    Hänssler E; Müller T; Palumbo K; Patek M; Brocker M; Krämer R; Burkovski A
    J Biotechnol; 2009 Jun; 142(2):114-22. PubMed ID: 19394370
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of increased glutamate availability on L-ornithine production in Corynebacterium glutamicum.
    Hwang JH; Hwang GH; Cho JY
    J Microbiol Biotechnol; 2008 Apr; 18(4):704-10. PubMed ID: 18467864
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhancing the supply of oxaloacetate for L-glutamate production by pyc overexpression in different Corynebacterium glutamicum.
    Guo X; Wang J; Xie X; Xu Q; Zhang C; Chen N
    Biotechnol Lett; 2013 Jun; 35(6):943-50. PubMed ID: 23690048
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microbial production of L -glutamate and L -glutamine by recombinant Corynebacterium glutamicum harboring Vitreoscilla hemoglobin gene vgb.
    Liu Q; Zhang J; Wei XX; Ouyang SP; Wu Q; Chen GQ
    Appl Microbiol Biotechnol; 2008 Jan; 77(6):1297-304. PubMed ID: 18040683
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of pyruvate dehydrogenase complex deficiency on L-lysine production with Corynebacterium glutamicum.
    Blombach B; Schreiner ME; Moch M; Oldiges M; Eikmanns BJ
    Appl Microbiol Biotechnol; 2007 Sep; 76(3):615-23. PubMed ID: 17333167
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Beyond growth rate 0.6: Corynebacterium glutamicum cultivated in highly diluted environments.
    Grünberger A; van Ooyen J; Paczia N; Rohe P; Schiendzielorz G; Eggeling L; Wiechert W; Kohlheyer D; Noack S
    Biotechnol Bioeng; 2013 Jan; 110(1):220-8. PubMed ID: 22890752
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Metabolic flux analysis of L-valine fermentation in Corynebacterium glutamicum].
    Li XM; Li NQ; Yang Y; Jiang XL; Qiu YJ; Zhang XY
    Sheng Wu Gong Cheng Xue Bao; 2004 May; 20(3):403-7. PubMed ID: 15971614
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Scale-up from shake flasks to fermenters in batch and continuous mode with Corynebacterium glutamicum on lactic acid based on oxygen transfer and pH.
    Seletzky JM; Noak U; Fricke J; Welk E; Eberhard W; Knocke C; Büchs J
    Biotechnol Bioeng; 2007 Nov; 98(4):800-11. PubMed ID: 17318907
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mutation-induced metabolite pool alterations in Corynebacterium glutamicum: towards the identification of nitrogen control signals.
    Müller T; Strösser J; Buchinger S; Nolden L; Wirtz A; Krämer R; Burkovski A
    J Biotechnol; 2006 Dec; 126(4):440-53. PubMed ID: 16822574
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metabolic flux distributions in Corynebacterium glutamicum during growth and lysine overproduction.
    Vallino JJ; Stephanopoulos G
    Biotechnol Bioeng; 1993 Mar; 41(6):633-46. PubMed ID: 18609599
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metabolic network analysis of lysine producing Corynebacterium glutamicum at a miniaturized scale.
    Wittmann C; Kim HM; Heinzle E
    Biotechnol Bioeng; 2004 Jul; 87(1):1-6. PubMed ID: 15211482
    [TBL] [Abstract][Full Text] [Related]  

  • 36. On-line optimization of glutamate production based on balanced metabolic control by RQ.
    Xiao J; Shi Z; Gao P; Feng H; Duan Z; Mao Z
    Bioprocess Biosyst Eng; 2006 Jul; 29(2):109-17. PubMed ID: 16614826
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Application of a pH feedback-controlled substrate feeding method in glutamic acid fermentation].
    Xing Y; Zhang L; Cong W; Yue L; Chen C; Ma J
    Sheng Wu Gong Cheng Xue Bao; 2011 Oct; 27(10):1457-63. PubMed ID: 22260062
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The impact of fluid mechanical stress on Corynebacterium glutamicum during continuous cultivation in an agitated bioreactor.
    Chamsartra S; Hewitt CJ; Nienow AW
    Biotechnol Lett; 2005 May; 27(10):693-700. PubMed ID: 16049736
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Effect of amn gene deletion on Corynebacterium glutamicum S9114 metabolism].
    Mei J; Liu L; Wu J
    Wei Sheng Wu Xue Bao; 2015 Dec; 55(12):1568-75. PubMed ID: 27101699
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Glutamate Overproduction in Corynebacterium glutamicum Triggered by a Decrease in the Level of a Complex Comprising DtsR and a Biotin-containing Subunit.
    Kimura E; Yagoshi C; Kawahara Y; Ohsumi T; Nakamatsu T; Tokuda H
    Biosci Biotechnol Biochem; 1999; 63(7):1274-8. PubMed ID: 27380236
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.