BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 15614534)

  • 41. Effect of lysine succinylation on the regulation of 2-oxoglutarate dehydrogenase inhibitor, OdhI, involved in glutamate production in Corynebacterium glutamicum.
    Komine-Abe A; Nagano-Shoji M; Kubo S; Kawasaki H; Yoshida M; Nishiyama M; Kosono S
    Biosci Biotechnol Biochem; 2017 Nov; 81(11):2130-2138. PubMed ID: 28899215
    [TBL] [Abstract][Full Text] [Related]  

  • 42. High-level exogenous glutamic acid-independent production of poly-(γ-glutamic acid) with organic acid addition in a new isolated Bacillus subtilis C10.
    Zhang H; Zhu J; Zhu X; Cai J; Zhang A; Hong Y; Huang J; Huang L; Xu Z
    Bioresour Technol; 2012 Jul; 116():241-6. PubMed ID: 22522018
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Rational metabolic engineering of
    Liu J; Qiao Z; Zhao Y; Xu M; Zhang X; Yang T; Rao Z
    Sheng Wu Gong Cheng Xue Bao; 2023 Aug; 39(8):3273-3289. PubMed ID: 37622360
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dual production of poly(3-hydroxybutyrate) and glutamate using variable biotin concentrations in Corynebacterium glutamicum.
    Jo SJ; Leong CR; Matsumoto K; Taguchi S
    J Biosci Bioeng; 2009 Apr; 107(4):409-11. PubMed ID: 19332300
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of elevated dissolved carbon dioxide concentrations on growth of Corynebacterium glutamicum on D-glucose and L-lactate.
    Bäumchen C; Knoll A; Husemann B; Seletzky J; Maier B; Dietrich C; Amoabediny G; Büchs J
    J Biotechnol; 2007 Mar; 128(4):868-74. PubMed ID: 17275119
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Importance of phosphoenolpyruvate carboxylase of Corynebacterium glutamicum during the temperature triggered glutamic acid fermentation.
    Delaunay S; Uy D; Baucher MF; Engasser JM; Guyonvarch A; Goergen JL
    Metab Eng; 1999 Oct; 1(4):334-43. PubMed ID: 10937826
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain.
    Okino S; Noburyu R; Suda M; Jojima T; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2008 Dec; 81(3):459-64. PubMed ID: 18777022
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Modeling and optimization of glutamic acid production using mixed culture of Corynebacterium glutamicum NCIM2168 and Pseudomonas reptilivora NCIM2598.
    Kumar RS; Moorthy IM; Baskar R
    Prep Biochem Biotechnol; 2013; 43(7):668-81. PubMed ID: 23768112
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Metabolic analysis of glutamate production by Corynebacterium glutamicum.
    Gourdon P; Lindley ND
    Metab Eng; 1999 Jul; 1(3):224-31. PubMed ID: 10937937
    [TBL] [Abstract][Full Text] [Related]  

  • 50. In silico genome-scale reconstruction and validation of the Corynebacterium glutamicum metabolic network.
    Kjeldsen KR; Nielsen J
    Biotechnol Bioeng; 2009 Feb; 102(2):583-97. PubMed ID: 18985611
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The alternative sigma factor SigB of Corynebacterium glutamicum modulates global gene expression during transition from exponential growth to stationary phase.
    Larisch C; Nakunst D; Hüser AT; Tauch A; Kalinowski J
    BMC Genomics; 2007 Jan; 8():4. PubMed ID: 17204139
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A method for the determination of pyruvate carboxylase activity during the glutamic acid fermentation with Corynebacterium glutamicum.
    Uy D; Delaunay S; Engasser J; Goergen J
    J Microbiol Methods; 1999 Dec; 39(1):91-6. PubMed ID: 10579510
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Markov Chain Monte Carlo Algorithm based metabolic flux distribution analysis on Corynebacterium glutamicum.
    Kadirkamanathan V; Yang J; Billings SA; Wright PC
    Bioinformatics; 2006 Nov; 22(21):2681-7. PubMed ID: 16940326
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Generalised additive modelling approach to the fermentation process of glutamate.
    Liu CB; Li Y; Pan F; Shi ZP
    Bioresour Technol; 2011 Mar; 102(5):4184-90. PubMed ID: 21215612
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Metabolic flux engineering of L-lysine production in Corynebacterium glutamicum--over expression and modification of G6P dehydrogenase.
    Becker J; Klopprogge C; Herold A; Zelder O; Bolten CJ; Wittmann C
    J Biotechnol; 2007 Oct; 132(2):99-109. PubMed ID: 17624457
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Altered metabolic flux due to deletion of odhA causes L-glutamate overproduction in Corynebacterium glutamicum.
    Asakura Y; Kimura E; Usuda Y; Kawahara Y; Matsui K; Osumi T; Nakamatsu T
    Appl Environ Microbiol; 2007 Feb; 73(4):1308-19. PubMed ID: 17158630
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Monitoring and modeling of the reaction dynamics in the valine/leucine synthesis pathway in Corynebacterium glutamicum.
    Magnus JB; Hollwedel D; Oldiges M; Takors R
    Biotechnol Prog; 2006; 22(4):1071-83. PubMed ID: 16889382
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Determination of soluble and granular inorganic polyphosphate in Corynebacterium glutamicum.
    Klauth P; Pallerla SR; Vidaurre D; Ralfs C; Wendisch VF; Schoberth SM
    Appl Microbiol Biotechnol; 2006 Oct; 72(5):1099-106. PubMed ID: 16977467
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Utilization of soluble starch by a recombinant Corynebacterium glutamicum strain: growth and lysine production.
    Seibold G; Auchter M; Berens S; Kalinowski J; Eikmanns BJ
    J Biotechnol; 2006 Jul; 124(2):381-91. PubMed ID: 16488498
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Gluconate as suitable potential reduction supplier in Corynebacterium glutamicum: cloning and expression of gntP and gntK in Escherichia coli.
    Porco A; Gamero EE; Mylonás E; Istúriz T
    Biol Res; 2008; 41(3):349-58. PubMed ID: 19399347
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.