BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 15614853)

  • 1. Mechanistic study of membrane concentration and recovery of Listeria monocytogenes.
    Chen WT; Hendrickson RL; Huang CP; Sherman D; Geng T; Bhunia AK; Ladisch MR
    Biotechnol Bioeng; 2005 Feb; 89(3):263-73. PubMed ID: 15614853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Factors influencing the ability of Listeria monocytogenes to pass through a membrane filter by active infiltration.
    Nakazawa K; Hasegawa H; Nakagawa Y; Terao M; Matsuyama T
    Appl Environ Microbiol; 2005 Nov; 71(11):7571-4. PubMed ID: 16269806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Limitation in the detection of Listeria monocytogenes in food in the presence of competing Listeria innocua.
    Oravcová K; Trncíková T; Kuchta T; Kaclíková E
    J Appl Microbiol; 2008 Feb; 104(2):429-37. PubMed ID: 17887983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validation of NMKL method No. 136--Listeria monocytogenes, detection and enumeration in foods and feed.
    Loncarevic S; Økland M; Sehic E; Norli HS; Johansson T
    Int J Food Microbiol; 2008 May; 124(2):154-63. PubMed ID: 18472176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gold-coated polycarbonate membrane filter for pathogen concentration and SERS-based detection.
    Rule Wigginton K; Vikesland PJ
    Analyst; 2010 Jun; 135(6):1320-6. PubMed ID: 20498881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A generic approach for the detection of whole Listeria monocytogenes cells in contaminated samples using surface plasmon resonance.
    Leonard P; Hearty S; Quinn J; O'Kennedy R
    Biosens Bioelectron; 2004 May; 19(10):1331-5. PubMed ID: 15046767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Upstream sample processing facilitates PCR detection of Listeria monocytogenes in mayonnaise-based ready-to-eat (RTE) salads.
    Isonhood J; Drake M; Jaykus LA
    Food Microbiol; 2006 Sep; 23(6):584-90. PubMed ID: 16943055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A filtration-based real-time PCR method for the quantitative detection of viable Salmonella enterica and Listeria monocytogenes in food samples.
    D'Urso OF; Poltronieri P; Marsigliante S; Storelli C; Hernández M; Rodríguez-Lázaro D
    Food Microbiol; 2009 May; 26(3):311-6. PubMed ID: 19269574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane filtration of pharmaceutical solutions.
    McKinnon BT; Avis KE
    Am J Hosp Pharm; 1993 Sep; 50(9):1921-36. PubMed ID: 8135243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid real-time PCR detection of Listeria monocytogenes in enriched food samples based on the ssrA gene, a novel diagnostic target.
    O' Grady J; Sedano-Balbás S; Maher M; Smith T; Barry T
    Food Microbiol; 2008 Feb; 25(1):75-84. PubMed ID: 17993379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane filtration method for enumeration and isolation of Alicyclobacillus spp. from apple juice.
    Lee SY; Chang SS; Shin JH; Kang DH
    Lett Appl Microbiol; 2007 Nov; 45(5):540-6. PubMed ID: 17908225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of 3M Petrifilm environmental Listeria plates against standard enrichment methods for the detection of Listeria monocytogenes of epidemiological significance from environmental surfaces.
    Nyachuba DG; Donnelly CW
    J Food Sci; 2007 Nov; 72(9):M346-54. PubMed ID: 18034727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction and evaluation of a microbiological positive process internal control for PCR-based examination of food samples for Listeria monocytogenes and Salmonella enterica.
    Murphy NM; McLauchlin J; Ohai C; Grant KA
    Int J Food Microbiol; 2007 Nov; 120(1-2):110-9. PubMed ID: 17604864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of prior growth temperature, type of enrichment medium, and temperature and time of storage on recovery of Listeria monocytogenes following high pressure processing of milk.
    Bull MK; Hayman MM; Stewart CM; Szabo EA; Knabel SJ
    Int J Food Microbiol; 2005 May; 101(1):53-61. PubMed ID: 15878406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of a new chromogenic agar for the detection of Listeria in food.
    Willis C; Baalham T; Greenwood M; Presland F
    J Appl Microbiol; 2006 Sep; 101(3):711-7. PubMed ID: 16907821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance evaluation of a low conductive growth medium (LCGM) for growth of healthy and stressed Listeria monocytogenes and other common bacterial species.
    Banada PP; Liu YS; Yang L; Bashir R; Bhunia AK
    Int J Food Microbiol; 2006 Aug; 111(1):12-20. PubMed ID: 16790285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predictive modelling of the recovery of Listeria monocytogenes on sliced cooked ham after high pressure processing.
    Koseki S; Mizuno Y; Yamamoto K
    Int J Food Microbiol; 2007 Nov; 119(3):300-7. PubMed ID: 17900728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel real-time PCR-based method for the detection of Listeria monocytogenes in food.
    Oravcová K; Kuchta T; Kaclíková E
    Lett Appl Microbiol; 2007 Nov; 45(5):568-73. PubMed ID: 17916129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Invasion assay of Listeria monocytogenes using Vero and Caco-2 cells.
    Yamada F; Ueda F; Ochiai Y; Mochizuki M; Shoji H; Ogawa-Goto K; Sata T; Ogasawara K; Fujima A; Hondo R
    J Microbiol Methods; 2006 Jul; 66(1):96-103. PubMed ID: 16410027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of mild-heat treatment following high-pressure processing to prevent recovery of pressure-injured Listeria monocytogenes in milk.
    Koseki S; Mizuno Y; Yamamoto K
    Food Microbiol; 2008 Apr; 25(2):288-93. PubMed ID: 18206771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.