These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 15614907)

  • 1. Germanium-catalyzed growth of zinc oxide nanowires: a semiconductor catalyst for nanowire synthesis.
    Pan ZW; Dai S; Rouleau CM; Lowndes DH
    Angew Chem Int Ed Engl; 2004 Dec; 44(2):274-8. PubMed ID: 15614907
    [No Abstract]   [Full Text] [Related]  

  • 2. Temperature-dependent growth of germanium oxide and silicon oxide based nanostructures, aligned silicon oxide nanowire assemblies, and silicon oxide microtubes.
    Hu J; Jiang Y; Meng X; Lee CS; Lee ST
    Small; 2005 Apr; 1(4):429-38. PubMed ID: 17193468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single crystalline and core-shell indium-catalyzed germanium nanowires-a systematic thermal CVD growth study.
    Xiang Y; Cao L; Conesa-Boj S; Estrade S; Arbiol J; Peiro F; Heiss M; Zardo I; Morante JR; Brongersma ML; Fontcuberta I Morral A
    Nanotechnology; 2009 Jun; 20(24):245608. PubMed ID: 19471084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Splendid one-dimensional nanostructures of zinc oxide: a new nanomaterial family for nanotechnology.
    Wang ZL
    ACS Nano; 2008 Oct; 2(10):1987-92. PubMed ID: 19206442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective growth of vertical ZnO nanowire arrays using chemically anchored gold nanoparticles.
    Ito D; Jespersen ML; Hutchison JE
    ACS Nano; 2008 Oct; 2(10):2001-6. PubMed ID: 19206444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalyst-nanostructure interaction in the growth of 1-D ZnO nanostructures.
    Borchers C; Müller S; Stichtenoth D; Schwen D; Ronning C
    J Phys Chem B; 2006 Feb; 110(4):1656-60. PubMed ID: 16471729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication and characterization of directly-assembled ZnO nanowire field effect transistors with polymer gate dielectrics.
    Yoon A; Hong WK; Lee T
    J Nanosci Nanotechnol; 2007 Nov; 7(11):4101-5. PubMed ID: 18047128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ZnO-based hollow nanoparticles by selective etching: elimination and reconstruction of metal-semiconductor interface, improvement of blue emission and photocatalysis.
    Zeng H; Cai W; Liu P; Xu X; Zhou H; Klingshirn C; Kalt H
    ACS Nano; 2008 Aug; 2(8):1661-70. PubMed ID: 19206370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Patterned growth of ZnO nanostructures based on the templation of plant cell walls.
    Cheng CL; Chen CC; Lin HY; Chen TT; Liou SC; Chu MW; Chen RS; Chen YF
    J Nanosci Nanotechnol; 2008 Dec; 8(12):6344-8. PubMed ID: 19205204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonvolatile resistive switching in single crystalline ZnO nanowires.
    Yang Y; Zhang X; Gao M; Zeng F; Zhou W; Xie S; Pan F
    Nanoscale; 2011 Apr; 3(4):1917-21. PubMed ID: 21394361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vertical growth of Ge nanowires from biotemplated Au nanoparticle catalysts.
    Sierra-Sastre Y; Choi S; Picraux ST; Batt CA
    J Am Chem Soc; 2008 Aug; 130(32):10488-9. PubMed ID: 18642821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structures of planar defects in ZnO nanobelts and nanowires.
    Ding Y; Wang ZL
    Micron; 2009 Apr; 40(3):335-42. PubMed ID: 19081262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The fabrication of ZnO nanowire field-effect transistors by roll-transfer printing.
    Chang YK; Hong FC
    Nanotechnology; 2009 May; 20(19):195302. PubMed ID: 19420638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel synthesis of nanorod ZnO and Fe-doped ZnO by the hydrolysis of metal powders.
    Han BS; Uhm YR; Kim GM; Rhee CK
    J Nanosci Nanotechnol; 2007 Nov; 7(11):4158-60. PubMed ID: 18047141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth of well-aligned ZnO nanorods using auge catalyst by vapor phase transportation.
    Ha SY; Jung MN; Park SH; Ko HJ; Ko H; Oh DC; Yao T; Chang JH
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3624-7. PubMed ID: 17252824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoparticle-coated n-ZnO/p-Si photodiodes with improved photoresponsivities and acceptance angles for potential solar cell applications.
    Chen CP; Lin PH; Chen LY; Ke MY; Cheng YW; Huang J
    Nanotechnology; 2009 Jun; 20(24):245204. PubMed ID: 19468172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-yield synthesis of single-crystal nanosprings of ZnO.
    Gao PX; Wang ZL
    Small; 2005 Oct; 1(10):945-9. PubMed ID: 17193373
    [No Abstract]   [Full Text] [Related]  

  • 18. Vertically aligned Zn2SiO4 nanotube/ZnO nanowire heterojunction arrays.
    Zhou J; Liu J; Wang X; Song J; Tummala R; Xu NS; Wang ZL
    Small; 2007 Apr; 3(4):622-6. PubMed ID: 17309091
    [No Abstract]   [Full Text] [Related]  

  • 19. Fabrication of ZnO nanoplate-nanorod junctions.
    Zhan J; Bando Y; Hu J; Golberg D; Kurashima K
    Small; 2006 Jan; 2(1):62-5. PubMed ID: 17193555
    [No Abstract]   [Full Text] [Related]  

  • 20. Ge/Si nanowire mesoscopic Josephson junctions.
    Xiang J; Vidan A; Tinkham M; Westervelt RM; Lieber CM
    Nat Nanotechnol; 2006 Dec; 1(3):208-13. PubMed ID: 18654188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.