These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 15614970)
61. Mass transfer coefficient and concentration boundary layer thickness for a dissolving NAPL pool in porous media. Chrysikopoulos CV; Hsuan PY; Fyrillas MM; Lee KY J Hazard Mater; 2003 Feb; 97(1-3):245-55. PubMed ID: 12573841 [TBL] [Abstract][Full Text] [Related]
62. Characterization of pore scale NAPL morphology in homogeneous sands as a function of grain size and NAPL dissolution. Cho J; Annable MD Chemosphere; 2005 Nov; 61(7):899-908. PubMed ID: 15950262 [TBL] [Abstract][Full Text] [Related]
63. Characterizing the immiscible transport properties of diesel and water in peat soil. Gharedaghloo B; Price JS J Contam Hydrol; 2019 Feb; 221():11-25. PubMed ID: 30630610 [TBL] [Abstract][Full Text] [Related]
64. Scaling of spontaneous imbibition data with wettability included. Li K J Contam Hydrol; 2007 Jan; 89(3-4):218-30. PubMed ID: 17081652 [TBL] [Abstract][Full Text] [Related]
65. An evaluation of Sherwood-Gilland models for NAPL dissolution and their relationship to soil properties. Kokkinaki A; O'Carroll DM; Werth CJ; Sleep BE J Contam Hydrol; 2013 Dec; 155():87-98. PubMed ID: 24220700 [TBL] [Abstract][Full Text] [Related]
66. Effect of water content on transient nonequilibrium NAPL-gas mass transfer during soil vapor extraction. Yoon H; Kim JH; Liljestrand HM; Khim J J Contam Hydrol; 2002 Jan; 54(1-2):1-18. PubMed ID: 11848263 [TBL] [Abstract][Full Text] [Related]
67. Refinement of the density-modified displacement method for efficient treatment of tetrachloroethene source zones. Ramsburg CA; Pennell KD; Kibbey TC; Hayes KF J Contam Hydrol; 2004 Oct; 74(1-4):105-31. PubMed ID: 15358489 [TBL] [Abstract][Full Text] [Related]
68. Radon as a naturally occurring tracer for the assessment of residual NAPL contamination of aquifers. Schubert M; Paschke A; Lau S; Geyer W; Knöller K Environ Pollut; 2007 Feb; 145(3):920-7. PubMed ID: 16781031 [TBL] [Abstract][Full Text] [Related]
69. Use of a surfactant-stabilized emulsion to deliver 1-butanol for density-modified displacement of trichloroethene. Ramsburg CA; Pennell KD; Kibbey TC; Hayes KF Environ Sci Technol; 2003 Sep; 37(18):4246-53. PubMed ID: 14524460 [TBL] [Abstract][Full Text] [Related]
70. Infiltration and redistribution of LNAPL into unsaturated layered porous media. Wipfler EL; Ness M; Breedveld GD; Marsman A; Van Der Zee SE J Contam Hydrol; 2004 Jul; 71(1-4):47-66. PubMed ID: 15145561 [TBL] [Abstract][Full Text] [Related]
71. Soil radon survey to assess NAPL contamination from an ancient spill. Do kerosene vapors affect radon partition ? De Simone G; Lucchetti C; Pompilj F; Galli G; Tuccimei P; Curatolo P; Giorgi R J Environ Radioact; 2017 May; 171():138-147. PubMed ID: 28249206 [TBL] [Abstract][Full Text] [Related]
72. Modeling the impact of a benzene source zone on the transport behavior of PAHs in groundwater. Russold S; Schirmer M; Piepenbrink M; Schirmer K Environ Sci Technol; 2006 Jun; 40(11):3565-71. PubMed ID: 16786695 [TBL] [Abstract][Full Text] [Related]
73. Mechanisms affecting the infiltration and distribution of ethanol-blended gasoline in the vadose zone. McDowell CJ; Powers SE Environ Sci Technol; 2003 May; 37(9):1803-10. PubMed ID: 12775051 [TBL] [Abstract][Full Text] [Related]
74. Effects of liquid layers and distribution patterns on three-phase saturation and relative permeability relationships: a micromodel study. Tsai JP; Chang LC; Hsu SY; Shan HY Environ Sci Pollut Res Int; 2017 Dec; 24(35):26927-26939. PubMed ID: 26150292 [TBL] [Abstract][Full Text] [Related]
75. Remediation of nonaqueous phase liquid polluted sites using surfactant-enhanced air sparging and soil vapor extraction. Qin CY; Zhao YS; Su Y; Zheng W Water Environ Res; 2013 Feb; 85(2):133-40. PubMed ID: 23472329 [TBL] [Abstract][Full Text] [Related]
76. Laboratory-scale experiments and numerical modeling of cosolvent flushing of multi-component NAPLs in saturated porous media. Agaoglu B; Scheytt T; Copty NK J Contam Hydrol; 2012 Oct; 140-141():80-94. PubMed ID: 23010548 [TBL] [Abstract][Full Text] [Related]
77. Comparison of theory and experiment for NAPL dissolution in porous media. Bahar T; Golfier F; Oltéan C; Lefevre E; Lorgeoux C J Contam Hydrol; 2018 Apr; 211():49-64. PubMed ID: 29573829 [TBL] [Abstract][Full Text] [Related]
78. Modeling dissolution and volatilization of LNAPL sources migrating on the groundwater table. Kim J; Corapcioglu MY J Contam Hydrol; 2003 Aug; 65(1-2):137-58. PubMed ID: 12855205 [TBL] [Abstract][Full Text] [Related]
79. Simulated formation and flow of microemulsions during surfactant flushing of contaminated soil. Ouyan Y; Cho JS; Mansell RS Water Res; 2002 Jan; 36(1):33-40. PubMed ID: 11766810 [TBL] [Abstract][Full Text] [Related]
80. Dissolution of a well-defined trichloroethylene pool in saturated porous media: experimental results and model simulations. Lee KY; Chrysikopoulos CV Water Res; 2002 Sep; 36(15):3911-8. PubMed ID: 12369536 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]