BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

457 related articles for article (PubMed ID: 15614999)

  • 1. Intraspinal microstimulation generates functional movements after spinal-cord injury.
    Saigal R; Renzi C; Mushahwar VK
    IEEE Trans Neural Syst Rehabil Eng; 2004 Dec; 12(4):430-40. PubMed ID: 15614999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intraspinal micro stimulation generates locomotor-like and feedback-controlled movements.
    Mushahwar VK; Gillard DM; Gauthier MJ; Prochazka A
    IEEE Trans Neural Syst Rehabil Eng; 2002 Mar; 10(1):68-81. PubMed ID: 12173741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strategies for generating prolonged functional standing using intramuscular stimulation or intraspinal microstimulation.
    Lau B; Guevremont L; Mushahwar VK
    IEEE Trans Neural Syst Rehabil Eng; 2007 Jun; 15(2):273-85. PubMed ID: 17601198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Could cortical signals control intraspinal stimulators? A theoretical evaluation.
    Mushahwar VK; Guevremont L; Saigal R
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):198-201. PubMed ID: 16792293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spinal cord microstimulation generates functional limb movements in chronically implanted cats.
    Mushahwar VK; Collins DF; Prochazka A
    Exp Neurol; 2000 Jun; 163(2):422-9. PubMed ID: 10833317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Movements generated by intraspinal microstimulation in the intermediate gray matter of the anesthetized, decerebrate, and spinal cat.
    Mushahwar VK; Aoyagi Y; Stein RB; Prochazka A
    Can J Physiol Pharmacol; 2004; 82(8-9):702-14. PubMed ID: 15523527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Restoring stepping after spinal cord injury using intraspinal microstimulation and novel control strategies.
    Holinski BJ; Mazurek KA; Everaert DG; Stein RB; Mushahwar VK
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5798-801. PubMed ID: 22255658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intraspinal microstimulation produces over-ground walking in anesthetized cats.
    Holinski BJ; Mazurek KA; Everaert DG; Toossi A; Lucas-Osma AM; Troyk P; Etienne-Cummings R; Stein RB; Mushahwar VK
    J Neural Eng; 2016 Oct; 13(5):056016. PubMed ID: 27619069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mid-lumbar segments are needed for the expression of locomotion in chronic spinal cats.
    Langlet C; Leblond H; Rossignol S
    J Neurophysiol; 2005 May; 93(5):2474-88. PubMed ID: 15647400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential of adult mammalian lumbosacral spinal cord to execute and acquire improved locomotion in the absence of supraspinal input.
    Edgerton VR; Roy RR; Hodgson JA; Prober RJ; de Guzman CP; de Leon R
    J Neurotrauma; 1992 Mar; 9 Suppl 1():S119-28. PubMed ID: 1588602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stimulation parameter optimization for functional electrical stimulation assisted gait in human spinal cord injury using response surface methodology.
    Kim Y; Schmit BD; Youm Y
    Clin Biomech (Bristol, Avon); 2006 Jun; 21(5):485-94. PubMed ID: 16488061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ambulation after incomplete spinal cord injury with EMG-triggered functional electrical stimulation.
    Dutta A; Kobetic R; Triolo RJ
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):791-4. PubMed ID: 18270018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hindlimb stepping movements in complete spinal rats induced by epidural spinal cord stimulation.
    Ichiyama RM; Gerasimenko YP; Zhong H; Roy RR; Edgerton VR
    Neurosci Lett; 2005 Aug; 383(3):339-44. PubMed ID: 15878636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recovery of hindlimb locomotion after incomplete spinal cord injury in the cat involves spontaneous compensatory changes within the spinal locomotor circuitry.
    Martinez M; Delivet-Mongrain H; Leblond H; Rossignol S
    J Neurophysiol; 2011 Oct; 106(4):1969-84. PubMed ID: 21775717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intraspinal stimulation caudal to spinal cord transections in rats. Testing the propriospinal hypothesis.
    Yakovenko S; Kowalczewski J; Prochazka A
    J Neurophysiol; 2007 Mar; 97(3):2570-4. PubMed ID: 17215510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Can the mammalian lumbar spinal cord learn a motor task?
    Hodgson JA; Roy RR; de Leon R; Dobkin B; Edgerton VR
    Med Sci Sports Exerc; 1994 Dec; 26(12):1491-7. PubMed ID: 7869884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epidural spinal-cord stimulation facilitates recovery of functional walking following incomplete spinal-cord injury.
    Carhart MR; He J; Herman R; D'Luzansky S; Willis WT
    IEEE Trans Neural Syst Rehabil Eng; 2004 Mar; 12(1):32-42. PubMed ID: 15068185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Locomotor-related networks in the lumbosacral enlargement of the adult spinal cat: activation through intraspinal microstimulation.
    Guevremont L; Renzi CG; Norton JA; Kowalczewski J; Saigal R; Mushahwar VK
    IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):266-72. PubMed ID: 17009485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characteristics and mechanisms of locomotion induced by intraspinal microstimulation and dorsal root stimulation in spinal cats.
    Barthélemy D; Leblond H; Rossignol S
    J Neurophysiol; 2007 Mar; 97(3):1986-2000. PubMed ID: 17215509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiologically based controller for generating overground locomotion using functional electrical stimulation.
    Guevremont L; Norton JA; Mushahwar VK
    J Neurophysiol; 2007 Mar; 97(3):2499-510. PubMed ID: 17229823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.