BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 15615116)

  • 1. Loading simulation of lumbar spine vertebrae during a compression test using the finite elements method and trabecular bone strength properties, determined by means of nanoindentations.
    Bouzakis KD; Mitsi S; Michailidis N; Mirisidis I; Mesomeris G; Maliaris G; Korlos A; Kapetanos G; Antonarakos P; Anagnostidis K
    J Musculoskelet Neuronal Interact; 2004 Jun; 4(2):152-8. PubMed ID: 15615116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stress distribution in the intervertebral disc correlates with strength distribution in subdiscal trabecular bone in the porcine lumbar spine.
    Ryan G; Pandit A; Apatsidis D
    Clin Biomech (Bristol, Avon); 2008 Aug; 23(7):859-69. PubMed ID: 18423954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of the mechanical interaction of the trabecular core with an external shell using rapid prototype and finite element models.
    Mc Donnell P; Harrison N; Lohfeld S; Kennedy O; Zhang Y; Mc Hugh PE
    J Mech Behav Biomed Mater; 2010 Jan; 3(1):63-76. PubMed ID: 19878903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Damage in trabecular bone at small strains.
    Morgan EF; Yeh OC; Keaveny TM
    Eur J Morphol; 2005; 42(1-2):13-21. PubMed ID: 16123020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of enhanced continuum FE with micro FE models of human vertebral bodies.
    Pahr DH; Zysset PK
    J Biomech; 2009 Mar; 42(4):455-62. PubMed ID: 19155014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The dependence between the strength and stiffness of cancellous and cortical bone tissue for tension and compression: extension of a unifying principle.
    Yeni YN; Dong XN; Fyhrie DP; Les CM
    Biomed Mater Eng; 2004; 14(3):303-10. PubMed ID: 15299242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical effect of posterior elements and ligamentous tissues of lumbar spine on load sharing.
    Najarian S; Dargahi J; Heidari B
    Biomed Mater Eng; 2005; 15(3):145-58. PubMed ID: 15911996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Valid micro finite element models of vertebral trabecular bone can be obtained using tissue properties measured with nanoindentation under wet conditions.
    Wolfram U; Wilke HJ; Zysset PK
    J Biomech; 2010 Jun; 43(9):1731-7. PubMed ID: 20206932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of the failure behaviour of vertebral trabecular architectures under uni-axial compression and wedge action loading conditions.
    McDonnell P; Harrison N; McHugh PE
    Med Eng Phys; 2010 Jul; 32(6):569-76. PubMed ID: 20233666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel model to analyze the effect of a large compressive follower pre-load on range of motions in a lumbar spine.
    Renner SM; Natarajan RN; Patwardhan AG; Havey RM; Voronov LI; Guo BY; Andersson GB; An HS
    J Biomech; 2007; 40(6):1326-32. PubMed ID: 16843473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The contribution of trabecular bone to the stiffness and strength of rat lumbar vertebrae.
    Barak MM; Weiner S; Shahar R
    Spine (Phila Pa 1976); 2010 Oct; 35(22):E1153-9. PubMed ID: 20881656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of large compression loads on lumbar spine in flexion and in torsion using a novel wrapping element.
    Shirazi-Adl A
    J Biomech; 2006; 39(2):267-75. PubMed ID: 16321628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of strain rate on the compressive stiffness properties of human lumbar intervertebral discs.
    Kemper AR; McNally C; Duma SM
    Biomed Sci Instrum; 2007; 43():176-81. PubMed ID: 17487077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strain changes on the cortical shell of vertebral bodies due to spine ageing: a parametric study using a finite element model evaluated by strain measurements.
    Lu Y; Rosenau E; Paetzold H; Klein A; PĆ¼schel K; Morlock MM; Huber G
    Proc Inst Mech Eng H; 2013 Dec; 227(12):1265-74. PubMed ID: 23990044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical effect of constraint in lumbar total disc replacement: a study with finite element analysis.
    Chung SK; Kim YE; Wang KC
    Spine (Phila Pa 1976); 2009 May; 34(12):1281-6. PubMed ID: 19455003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differences in vertebral structure and strength of inbred female mouse strains.
    Akhter MP; Otero JK; Iwaniec UT; Cullen DM; Haynatzki GR; Recker RR
    J Musculoskelet Neuronal Interact; 2004 Mar; 4(1):33-40. PubMed ID: 15615076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A biomechanical study of lumbar spondylolysis based on a three-dimensional finite element method.
    Chosa E; Totoribe K; Tajima N
    J Orthop Res; 2004 Jan; 22(1):158-63. PubMed ID: 14656675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of fusion-bone stiffness on the mechanical behavior of the lumbar spine after vertebral body replacement.
    Rohlmann A; Zander T; Bergmann G
    Clin Biomech (Bristol, Avon); 2006 Mar; 21(3):221-7. PubMed ID: 16356613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling the onset and propagation of trabecular bone microdamage during low-cycle fatigue.
    Kosmopoulos V; Schizas C; Keller TS
    J Biomech; 2008; 41(3):515-22. PubMed ID: 18076887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.