These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 15615834)

  • 1. Both kappa and mu opioid agonists inhibit glutamatergic input to ventral tegmental area neurons.
    Margolis EB; Hjelmstad GO; Bonci A; Fields HL
    J Neurophysiol; 2005 Jun; 93(6):3086-93. PubMed ID: 15615834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kappa-opioid agonists directly inhibit midbrain dopaminergic neurons.
    Margolis EB; Hjelmstad GO; Bonci A; Fields HL
    J Neurosci; 2003 Nov; 23(31):9981-6. PubMed ID: 14602811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acute amphetamine exposure selectively desensitizes kappa-opioid receptors in the nucleus accumbens.
    Xia YF; He L; Whistler JL; Hjelmstad GO
    Neuropsychopharmacology; 2008 Mar; 33(4):892-900. PubMed ID: 17551543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mu-opioid-mediated inhibition of glutamate synaptic transmission in rat central amygdala neurons.
    Zhu W; Pan ZZ
    Neuroscience; 2005; 133(1):97-103. PubMed ID: 15893634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mu and kappa opioid agonists modulate ventral tegmental area input to the ventral pallidum.
    Mitrovic I; Napier TC
    Eur J Neurosci; 2002 Jan; 15(2):257-68. PubMed ID: 11849293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of synaptic transmission in the rat nucleus of the solitary tract by endomorphin-1.
    Glatzer NR; Smith BN
    J Neurophysiol; 2005 May; 93(5):2530-40. PubMed ID: 15615836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential involvement of ventral tegmental mu, delta and kappa opioid receptors in modulation of basal mesolimbic dopamine release: in vivo microdialysis studies.
    Devine DP; Leone P; Pocock D; Wise RA
    J Pharmacol Exp Ther; 1993 Sep; 266(3):1236-46. PubMed ID: 7690399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DAMGO suppresses both excitatory and inhibitory synaptic transmission in supraoptic neurones of mouse hypothalamic slice preparations.
    Honda E; Ono K; Inenaga K
    J Neuroendocrinol; 2004 Mar; 16(3):198-207. PubMed ID: 15049850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ethanol dually modulates GABAergic synaptic transmission onto dopaminergic neurons in ventral tegmental area: role of mu-opioid receptors.
    Xiao C; Ye JH
    Neuroscience; 2008 Apr; 153(1):240-8. PubMed ID: 18343590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Presynaptic actions of opioid receptor agonists in ventromedial hypothalamic neurons in estrogen- and oil-treated female mice.
    Devidze N; Zhang Q; Zhou J; Lee AW; Pataky S; Kow LM; Pfaff DW
    Neuroscience; 2008 Apr; 152(4):942-9. PubMed ID: 18343595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular actions of opioids on periaqueductal grey neurons from C57B16/J mice and mutant mice lacking MOR-1.
    Vaughan CW; Bagley EE; Drew GM; Schuller A; Pintar JE; Hack SP; Christie MJ
    Br J Pharmacol; 2003 May; 139(2):362-7. PubMed ID: 12770941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of mu-opioid receptors excites a population of locus coeruleus-spinal neurons through presynaptic disinhibition.
    Pan YZ; Li DP; Chen SR; Pan HL
    Brain Res; 2004 Jan; 997(1):67-78. PubMed ID: 14715151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contingent and non-contingent effects of heroin on mu-opioid receptor-containing ventral tegmental area GABA neurons.
    Steffensen SC; Stobbs SH; Colago EE; Lee RS; Koob GF; Gallegos RA; Henriksen SJ
    Exp Neurol; 2006 Nov; 202(1):139-51. PubMed ID: 16814775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct bidirectional μ-opioid control of midbrain dopamine neurons.
    Margolis EB; Hjelmstad GO; Fujita W; Fields HL
    J Neurosci; 2014 Oct; 34(44):14707-16. PubMed ID: 25355223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct actions of cannabinoids on synaptic transmission in the nucleus accumbens: a comparison with opioids.
    Hoffman AF; Lupica CR
    J Neurophysiol; 2001 Jan; 85(1):72-83. PubMed ID: 11152707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Properties and opioid inhibition of mesolimbic dopamine neurons vary according to target location.
    Ford CP; Mark GP; Williams JT
    J Neurosci; 2006 Mar; 26(10):2788-97. PubMed ID: 16525058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrophysiological demonstration of mu, delta and kappa opioid receptors in the ventral pallidum.
    Mitrovic I; Napier TC
    J Pharmacol Exp Ther; 1995 Mar; 272(3):1260-70. PubMed ID: 7891342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sustained inhibition of neurotransmitter release from nontransient receptor potential vanilloid type 1-expressing primary afferents by mu-opioid receptor activation-enkephalin in the spinal cord.
    Zhou HY; Chen SR; Chen H; Pan HL
    J Pharmacol Exp Ther; 2008 Nov; 327(2):375-82. PubMed ID: 18669865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential expression and sensitivity of presynaptic and postsynaptic opioid receptors regulating hypothalamic proopiomelanocortin neurons.
    Pennock RL; Hentges ST
    J Neurosci; 2011 Jan; 31(1):281-8. PubMed ID: 21209213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An N-methyl-D-aspartate receptor mediated large, low-frequency, spontaneous excitatory postsynaptic current in neonatal rat spinal dorsal horn neurons.
    Thomson LM; Zeng J; Terman GW
    Neuroscience; 2006 Sep; 141(3):1489-501. PubMed ID: 16750886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.