BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 15616571)

  • 41. Solution structure and dynamics of the N-terminal cytosolic domain of rhomboid intramembrane protease from Pseudomonas aeruginosa: insights into a functional role in intramembrane proteolysis.
    Del Rio A; Dutta K; Chavez J; Ubarretxena-Belandia I; Ghose R
    J Mol Biol; 2007 Jan; 365(1):109-22. PubMed ID: 17059825
    [TBL] [Abstract][Full Text] [Related]  

  • 42. On the mechanism of SPP-catalysed intramembrane proteolysis; conformational control of peptide bond hydrolysis in the plane of the membrane.
    Lemberg MK; Martoglio B
    FEBS Lett; 2004 Apr; 564(3):213-8. PubMed ID: 15111098
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Identification of two novel fibrinolytic enzymes from Bacillus subtilis QK02.
    Ko JH; Yan JP; Zhu L; Qi YP
    Comp Biochem Physiol C Toxicol Pharmacol; 2004 Jan; 137(1):65-74. PubMed ID: 14984705
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Insights into substrate gating in H. influenzae rhomboid.
    Brooks CL; Lazareno-Saez C; Lamoureux JS; Mak MW; Lemieux MJ
    J Mol Biol; 2011 Apr; 407(5):687-97. PubMed ID: 21295583
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Coupled kinetics of ATP and peptide hydrolysis by Escherichia coli FtsH protease.
    Bruckner RC; Gunyuzlu PL; Stein RL
    Biochemistry; 2003 Sep; 42(36):10843-52. PubMed ID: 12962509
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Activity Assays for Rhomboid Proteases.
    Arutyunova E; Strisovsky K; Lemieux MJ
    Methods Enzymol; 2017; 584():395-437. PubMed ID: 28065272
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Identification of signal peptide peptidase, a presenilin-type aspartic protease.
    Weihofen A; Binns K; Lemberg MK; Ashman K; Martoglio B
    Science; 2002 Jun; 296(5576):2215-8. PubMed ID: 12077416
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The PDZ domain of the SpoIVB serine peptidase facilitates multiple functions.
    Hoa NT; Brannigan JA; Cutting SM
    J Bacteriol; 2001 Jul; 183(14):4364-73. PubMed ID: 11418578
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Notch and the amyloid precursor protein are cleaved by similar gamma-secretase(s).
    Kimberly WT; Esler WP; Ye W; Ostaszewski BL; Gao J; Diehl T; Selkoe DJ; Wolfe MS
    Biochemistry; 2003 Jan; 42(1):137-44. PubMed ID: 12515548
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enzymatic investigation of the Staphylococcus aureus type I signal peptidase SpsB - implications for the search for novel antibiotics.
    Rao S; Bockstael K; Nath S; Engelborghs Y; Anné J; Geukens N
    FEBS J; 2009 Jun; 276(12):3222-34. PubMed ID: 19438721
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Expression of bacillar glutamyl endopeptidase genes in Bacillus subtilis by a new mobilizable single-replicon vector pLF.
    Shevelev AB; Aleoshin VV; Trachuk LA; Granovsky AE; Kogan YN; Rumer LM; Serkina AV; Semenova EV; Bushueva AM; Livshits VA; Kostrov SV; Shcheglov AS; Novikova SI; Chestukhina GG
    Plasmid; 2000 May; 43(3):190-9. PubMed ID: 10783297
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Substrate specificity of rhomboid intramembrane proteases is governed by helix-breaking residues in the substrate transmembrane domain.
    Urban S; Freeman M
    Mol Cell; 2003 Jun; 11(6):1425-34. PubMed ID: 12820957
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Membrane immersion allows rhomboid proteases to achieve specificity by reading transmembrane segment dynamics.
    Moin SM; Urban S
    Elife; 2012 Nov; 1():e00173. PubMed ID: 23150798
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Activity-Based Protein Profiling of Rhomboid Proteases in Liposomes.
    Wolf EV; Seybold M; Hadravová R; Strisovsky K; Verhelst SH
    Chembiochem; 2015 Jul; 16(11):1616-21. PubMed ID: 26032951
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Proteolytic action of GlpG, a rhomboid protease in the Escherichia coli cytoplasmic membrane.
    Maegawa S; Ito K; Akiyama Y
    Biochemistry; 2005 Oct; 44(41):13543-52. PubMed ID: 16216077
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Purification and characterization of a glutamic-acid-specific endopeptidase from Bacillus subtilis ATCC 6051; application to the recovery of bioactive peptides from fusion proteins by sequence-specific digestion.
    Okamoto H; Fujiwara T; Nakamura E; Katoh T; Iwamoto H; Tsuzuki H
    Appl Microbiol Biotechnol; 1997 Jul; 48(1):27-33. PubMed ID: 9274045
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Influence of hydrophobic mismatch on the catalytic activity of Escherichia coli GlpG rhomboid protease.
    Foo AC; Harvey BG; Metz JJ; Goto NK
    Protein Sci; 2015 Apr; 24(4):464-73. PubMed ID: 25307614
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Rhomboid proteases and their biological functions.
    Freeman M
    Annu Rev Genet; 2008; 42():191-210. PubMed ID: 18605900
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Simple Cell-Based Assay for the Detection of Surface Protein Shedding by Rhomboid Proteases.
    Moncada-Pazos A; Grieve AG
    Methods Mol Biol; 2018; 1731():57-64. PubMed ID: 29318543
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Rhomboid homologs in mycobacteria: insights from phylogeny and genomic analysis.
    Kateete DP; Okee M; Katabazi FA; Okeng A; Asiimwe J; Boom HW; Eisenach KD; Joloba ML
    BMC Microbiol; 2010 Oct; 10():272. PubMed ID: 21029479
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.