These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 15616579)

  • 1. Escherichia coli dihydroxyacetone kinase controls gene expression by binding to transcription factor DhaR.
    Bächler C; Schneider P; Bähler P; Lustig A; Erni B
    EMBO J; 2005 Jan; 24(2):283-93. PubMed ID: 15616579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of the nucleotide-binding subunit DhaL of the Escherichia coli dihydroxyacetone kinase.
    Oberholzer AE; Schneider P; Baumann U; Erni B
    J Mol Biol; 2006 Jun; 359(3):539-45. PubMed ID: 16647083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The dihydroxyacetone kinase of Escherichia coli utilizes a phosphoprotein instead of ATP as phosphoryl donor.
    Gutknecht R; Beutler R; Garcia-Alles LF; Baumann U; Erni B
    EMBO J; 2001 May; 20(10):2480-6. PubMed ID: 11350937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coiled-coil helix rotation selects repressing or activating state of transcriptional regulator DhaR.
    Shi R; McDonald L; Cygler M; Ekiel I
    Structure; 2014 Mar; 22(3):478-87. PubMed ID: 24440518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Small substrate, big surprise: fold, function and phylogeny of dihydroxyacetone kinases.
    Erni B; Siebold C; Christen S; Srinivas A; Oberholzer A; Baumann U
    Cell Mol Life Sci; 2006 Apr; 63(7-8):890-900. PubMed ID: 16505971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and mechanistic insight into covalent substrate binding by Escherichia coli dihydroxyacetone kinase.
    Shi R; McDonald L; Cui Q; Matte A; Cygler M; Ekiel I
    Proc Natl Acad Sci U S A; 2011 Jan; 108(4):1302-7. PubMed ID: 21209328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphoenolpyruvate- and ATP-dependent dihydroxyacetone kinases: covalent substrate-binding and kinetic mechanism.
    Garcia-Alles LF; Siebold C; Nyffeler TL; Flükiger-Brühwiler K; Schneider P; Bürgi HB; Baumann U; Erni B
    Biochemistry; 2004 Oct; 43(41):13037-45. PubMed ID: 15476397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mechanism of covalent substrate binding in the x-ray structure of subunit K of the Escherichia coli dihydroxyacetone kinase.
    Siebold C; García-Alles LF; Erni B; Baumann U
    Proc Natl Acad Sci U S A; 2003 Jul; 100(14):8188-92. PubMed ID: 12813127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional regulation of flhDC by QseBC and sigma (FliA) in enterohaemorrhagic Escherichia coli.
    Clarke MB; Sperandio V
    Mol Microbiol; 2005 Sep; 57(6):1734-49. PubMed ID: 16135237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of the Escherichia coli FlhDC complex, a prokaryotic heteromeric regulator of transcription.
    Wang S; Fleming RT; Westbrook EM; Matsumura P; McKay DB
    J Mol Biol; 2006 Jan; 355(4):798-808. PubMed ID: 16337229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupling nucleotide hydrolysis to transcription activation performance in a bacterial enhancer binding protein.
    Joly N; Rappas M; Wigneshweraraj SR; Zhang X; Buck M
    Mol Microbiol; 2007 Nov; 66(3):583-95. PubMed ID: 17883390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stimulation of the potassium sensor KdpD kinase activity by interaction with the phosphotransferase protein IIA(Ntr) in Escherichia coli.
    Lüttmann D; Heermann R; Zimmer B; Hillmann A; Rampp IS; Jung K; Görke B
    Mol Microbiol; 2009 May; 72(4):978-94. PubMed ID: 19400808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. X-ray structures of the three Lactococcus lactis dihydroxyacetone kinase subunits and of a transient intersubunit complex.
    Zurbriggen A; Jeckelmann JM; Christen S; Bieniossek C; Baumann U; Erni B
    J Biol Chem; 2008 Dec; 283(51):35789-96. PubMed ID: 18957416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of a novel transcriptional activator and small RNA in post-transcriptional regulation of the glucose phosphoenolpyruvate phosphotransferase system.
    Vanderpool CK; Gottesman S
    Mol Microbiol; 2004 Nov; 54(4):1076-89. PubMed ID: 15522088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of TetD as a transcriptional activator of a subset of genes of the Escherichia coli SoxS/MarA/Rob regulon.
    Griffith KL; Becker SM; Wolf RE
    Mol Microbiol; 2005 May; 56(4):1103-17. PubMed ID: 15853893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GrlA of enterohemorrhagic Escherichia coli O157:H7 activates LEE1 by binding to the promoter region.
    Huang LH; Syu WJ
    J Microbiol Immunol Infect; 2008 Feb; 41(1):9-16. PubMed ID: 18327421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for a catalytic Mg2+ ion and effect of phosphate on the activity of Escherichia coli phosphofructokinase-2: regulatory properties of a ribokinase family member.
    Parducci RE; Cabrera R; Baez M; Guixé V
    Biochemistry; 2006 Aug; 45(30):9291-9. PubMed ID: 16866375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of SoxR-dependent transcription in Pseudomonas aeruginosa.
    Kobayashi K; Tagawa S
    J Biochem; 2004 Nov; 136(5):607-15. PubMed ID: 15632300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphoenolpyruvate phosphotransferase system regulates detection and processing of the quorum sensing signal autoinducer-2.
    Pereira CS; Santos AJ; Bejerano-Sagie M; Correia PB; Marques JC; Xavier KB
    Mol Microbiol; 2012 Apr; 84(1):93-104. PubMed ID: 22384939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of the pts operon in low G+C Gram-positive bacteria.
    Vadeboncoeur C; Frenette M; Lortie LA
    J Mol Microbiol Biotechnol; 2000 Oct; 2(4):483-90. PubMed ID: 11075921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.