BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 15616740)

  • 1. Apoptotic cell death dynamics of HL60 cells studied using a microfluidic cell trap device.
    Valero A; Merino F; Wolbers F; Luttge R; Vermes I; Andersson H; van den Berg A
    Lab Chip; 2005 Jan; 5(1):49-55. PubMed ID: 15616740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterizing doxorubicin-induced apoptosis in HepG2 cells using an integrated microfluidic device.
    Ye N; Qin J; Liu X; Shi W; Lin B
    Electrophoresis; 2007 Apr; 28(7):1146-53. PubMed ID: 17330224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A microfluidic device based on gravity and electric force driving for flow cytometry and fluorescence activated cell sorting.
    Yao B; Luo GA; Feng X; Wang W; Chen LX; Wang YM
    Lab Chip; 2004 Dec; 4(6):603-7. PubMed ID: 15570372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous perfusion microfluidic cell culture array for high-throughput cell-based assays.
    Hung PJ; Lee PJ; Sabounchi P; Lin R; Lee LP
    Biotechnol Bioeng; 2005 Jan; 89(1):1-8. PubMed ID: 15580587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Apoptosis induced kinetic changes in autofluorescence of cultured HL60 cells-possible application for single cell analysis on chip.
    Wolbers F; Andersson H; van den Berg A; Vermes I
    Apoptosis; 2004 Nov; 9(6):749-55. PubMed ID: 15505417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Apoptotic cell death kinetics in vitro depend on the cell types and the inducers used.
    Wolbers F; Buijtenhuijs P; Haanen C; Vermes I
    Apoptosis; 2004 May; 9(3):385-92. PubMed ID: 15258471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrokinetic measurements of dielectric properties of membrane for apoptotic HL-60 cells on chip-based device.
    Huang C; Chen A; Wang L; Guo M; Yu J
    Biomed Microdevices; 2007 Jun; 9(3):335-43. PubMed ID: 17195946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A microfluidic cell culture platform for real-time cellular imaging.
    Hsieh CC; Huang SB; Wu PC; Shieh DB; Lee GB
    Biomed Microdevices; 2009 Aug; 11(4):903-13. PubMed ID: 19370417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic single cell culture array.
    Di Carlo D; Wu LY; Lee LP
    Lab Chip; 2006 Nov; 6(11):1445-9. PubMed ID: 17066168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-channel 3-D cell culture device integrated on a silicon chip for anticancer drug sensitivity test.
    Torisawa YS; Shiku H; Yasukawa T; Nishizawa M; Matsue T
    Biomaterials; 2005 May; 26(14):2165-72. PubMed ID: 15576192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A microfluidic flow-through device for high throughput electrical lysis of bacterial cells based on continuous dc voltage.
    Wang HY; Bhunia AK; Lu C
    Biosens Bioelectron; 2006 Dec; 22(5):582-8. PubMed ID: 16530400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Label-free electrical discrimination of cells at normal, apoptotic and necrotic status with a microfluidic device.
    Gou HL; Zhang XB; Bao N; Xu JJ; Xia XH; Chen HY
    J Chromatogr A; 2011 Aug; 1218(33):5725-9. PubMed ID: 21774939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multicompartmented microfluidic device for characterization of dose-dependent cadmium cytotoxicity in BALB/3T3 fibroblast cells.
    Mahto SK; Yoon TH; Shin H; Rhee SW
    Biomed Microdevices; 2009 Apr; 11(2):401-11. PubMed ID: 18982453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An integrated microfluidic system for long-term perfusion culture and on-line monitoring of intestinal tissue models.
    Kimura H; Yamamoto T; Sakai H; Sakai Y; Fujii T
    Lab Chip; 2008 May; 8(5):741-6. PubMed ID: 18432344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microcavity array (MCA)-based biosensor chip for functional drug screening of 3D tissue models.
    Kloss D; Kurz R; Jahnke HG; Fischer M; Rothermel A; Anderegg U; Simon JC; Robitzki AA
    Biosens Bioelectron; 2008 May; 23(10):1473-80. PubMed ID: 18289841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell culture chip using low-shear mass transport.
    Liu K; Pitchimani R; Dang D; Bayer K; Harrington T; Pappas D
    Langmuir; 2008 Jun; 24(11):5955-60. PubMed ID: 18471001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parallel microfluidic networks for studying cellular response to chemical modulation.
    Liu D; Wang L; Zhong R; Li B; Ye N; Liu X; Lin B
    J Biotechnol; 2007 Sep; 131(3):286-92. PubMed ID: 17706314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic integration of substantially round glass capillaries for lateral patch clamping on chip.
    Ong WL; Tang KC; Agarwal A; Nagarajan R; Luo LW; Yobas L
    Lab Chip; 2007 Oct; 7(10):1357-66. PubMed ID: 17896022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silicon-based microfilters for whole blood cell separation.
    Ji HM; Samper V; Chen Y; Heng CK; Lim TM; Yobas L
    Biomed Microdevices; 2008 Apr; 10(2):251-7. PubMed ID: 17914675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prevention of air bubble formation in a microfluidic perfusion cell culture system using a microscale bubble trap.
    Sung JH; Shuler ML
    Biomed Microdevices; 2009 Aug; 11(4):731-8. PubMed ID: 19212816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.