These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Tensile yield in compact bone is determined by strain, post-yield behaviour by mineral content. Currey JD J Biomech; 2004 Apr; 37(4):549-56. PubMed ID: 14996567 [TBL] [Abstract][Full Text] [Related]
24. CART deficiency increases body weight but does not alter bone strength. Bartell SM; Isales CM; Baile CA; Kuhar MJ; Hamrick MW J Musculoskelet Neuronal Interact; 2008; 8(2):146-53. PubMed ID: 18622083 [TBL] [Abstract][Full Text] [Related]
25. Regional distinctions in cortical bone mineral density measured by pQCT can predict alterations in material property at the tibial diaphysis of the Cynomolgus monkey. Nonaka K; Fukuda S; Aoki K; Yoshida T; Ohya K Bone; 2006 Feb; 38(2):265-72. PubMed ID: 16213204 [TBL] [Abstract][Full Text] [Related]
26. Growth-dependent effects of dietary protein concentration and quality on the biomechanical properties of the diaphyseal rat femur. Alippi RM; Picasso E; Huygens P; Bozzini CE; Bozzini C Endocrinol Nutr; 2012 Jan; 59(1):35-43. PubMed ID: 22137534 [TBL] [Abstract][Full Text] [Related]
27. The relationship between muscle size and bone geometry during growth and in response to exercise. Daly RM; Saxon L; Turner CH; Robling AG; Bass SL Bone; 2004 Feb; 34(2):281-7. PubMed ID: 14962806 [TBL] [Abstract][Full Text] [Related]
28. pQCT provides better prediction of canine femur breaking load than does DXA. Moisio KC; Podolskaya G; Barnhart B; Berzins A; Sumner DR J Musculoskelet Neuronal Interact; 2003 Sep; 3(3):240-5. PubMed ID: 15758347 [TBL] [Abstract][Full Text] [Related]
29. Warfarin-induced impairment of cortical bone material quality and compensatory adaptation of cortical bone structure to mechanical stimuli. Sugiyama T; Takaki T; Sakanaka K; Sadamaru H; Mori K; Kato Y; Taguchi T; Saito T J Endocrinol; 2007 Jul; 194(1):213-22. PubMed ID: 17592035 [TBL] [Abstract][Full Text] [Related]
30. Severe bone alterations under beta2 agonist treatments: bone mass, microarchitecture and strength analyses in female rats. Bonnet N; Benhamou CL; Brunet-Imbault B; Arlettaz A; Horcajada MN; Richard O; Vico L; Collomp K; Courteix D Bone; 2005 Nov; 37(5):622-33. PubMed ID: 16157516 [TBL] [Abstract][Full Text] [Related]
31. Effects of hypophysectomy and recombinant human growth hormone on material and geometric properties and the pre- and post-yield behavior of femurs in young rats. Feldman S; Cointry GR; Leite Duarte ME; Sarrió L; Ferretti JL; Capozza RF Bone; 2004 Jan; 34(1):203-15. PubMed ID: 14751579 [TBL] [Abstract][Full Text] [Related]
32. How cancellous and cortical bones adapt to loading and growth hormone. Kalu DN; Banu J; Wang L J Musculoskelet Neuronal Interact; 2000 Sep; 1(1):19-23. PubMed ID: 15758520 [TBL] [Abstract][Full Text] [Related]
33. Bone density, strength, and formation in adult cathepsin K (-/-) mice. Pennypacker B; Shea M; Liu Q; Masarachia P; Saftig P; Rodan S; Rodan G; Kimmel D Bone; 2009 Feb; 44(2):199-207. PubMed ID: 18845279 [TBL] [Abstract][Full Text] [Related]
34. A comparison of mechanical properties derived from multiple skeletal sites in mice. Schriefer JL; Robling AG; Warden SJ; Fournier AJ; Mason JJ; Turner CH J Biomech; 2005 Mar; 38(3):467-75. PubMed ID: 15652544 [TBL] [Abstract][Full Text] [Related]
35. Bone mineral density, chemical composition and biomechanical properties of the tibia of female rats exposed to cadmium since weaning up to skeletal maturity. Brzóska MM; Majewska K; Moniuszko-Jakoniuk J Food Chem Toxicol; 2005 Oct; 43(10):1507-19. PubMed ID: 16005137 [TBL] [Abstract][Full Text] [Related]
36. The biomechanical response of human bone: the influence of bone volume and mineral density. Kemper A; Ng T; Duma S Biomed Sci Instrum; 2006; 42():284-9. PubMed ID: 16817622 [TBL] [Abstract][Full Text] [Related]
37. Mechanical properties of femoral diaphysis and femoral neck of female rats chronically exposed to various levels of cadmium. Brzóska MM; Majewska K; Moniuszko-Jakoniuk J Calcif Tissue Int; 2005 Apr; 76(4):287-98. PubMed ID: 15742233 [TBL] [Abstract][Full Text] [Related]
38. Daily treatment of aged ovariectomized rats with human parathyroid hormone (1-84) for 12 months reverses bone loss and enhances trabecular and cortical bone strength. Fox J; Miller MA; Newman MK; Metcalfe AF; Turner CH; Recker RR; Smith SY Calcif Tissue Int; 2006 Oct; 79(4):262-72. PubMed ID: 16969596 [TBL] [Abstract][Full Text] [Related]
39. Effects of treatment of ovariectomized adult rhesus monkeys with parathyroid hormone 1-84 for 16 months on trabecular and cortical bone structure and biomechanical properties of the proximal femur. Fox J; Miller MA; Recker RR; Turner CH; Smith SY Calcif Tissue Int; 2007 Jul; 81(1):53-63. PubMed ID: 17551766 [TBL] [Abstract][Full Text] [Related]
40. The mechanical phenotype of biglycan-deficient mice is bone- and gender-specific. Wallace JM; Rajachar RM; Chen XD; Shi S; Allen MR; Bloomfield SA; Les CM; Robey PG; Young MF; Kohn DH Bone; 2006 Jul; 39(1):106-16. PubMed ID: 16527557 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]