These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Excitation and emission wavelength ratiometric cyanide-sensitive probes for physiological sensing. Badugu R; Lakowicz JR; Geddes CD Anal Biochem; 2004 Apr; 327(1):82-90. PubMed ID: 15033514 [TBL] [Abstract][Full Text] [Related]
23. The development of photometric sensors for boronic acids. Springsteen G; Ballard CE; Gao S; Wang W; Wang B Bioorg Chem; 2001 Oct; 29(5):259-70. PubMed ID: 16256696 [TBL] [Abstract][Full Text] [Related]
24. The first fluorescent sensor for D-glucarate based on the cooperative action of boronic acid and guanidinium groups. Yang W; Yan J; Fang H; Wang B Chem Commun (Camb); 2003 Mar; (6):792-3. PubMed ID: 12703826 [TBL] [Abstract][Full Text] [Related]
26. Effect of the electron donor/acceptor orientation on the fluorescence transduction efficiency of the d-PET effect of carbazole-based fluorescent boronic acid sensors. Zhang X; Wu Y; Ji S; Guo H; Song P; Han K; Wu W; Wu W; James TD; Zhao J J Org Chem; 2010 Apr; 75(8):2578-88. PubMed ID: 20307091 [TBL] [Abstract][Full Text] [Related]
27. The design and development of fluorescent nano-optodes for in vivo glucose monitoring. Balaconis MK; Billingsley K; Dubach MJ; Cash KJ; Clark HA J Diabetes Sci Technol; 2011 Jan; 5(1):68-75. PubMed ID: 21303627 [TBL] [Abstract][Full Text] [Related]
28. Ratiometric fluorescent probe based on gold nanoclusters and alizarin red-boronic acid for monitoring glucose in brain microdialysate. Wang LL; Qiao J; Liu HH; Hao J; Qi L; Zhou XP; Li D; Nie ZX; Mao LQ Anal Chem; 2014 Oct; 86(19):9758-64. PubMed ID: 25157796 [TBL] [Abstract][Full Text] [Related]
29. Macrocycle-derived functional xanthenes and progress towards concurrent detection of glucose and fructose. Rusin O; Alpturk O; He M; Escobedo JO; Jiang S; Dawan F; Lian K; McCarroll ME; Warner IM; Strongin RM J Fluoresc; 2004 Sep; 14(5):611-5. PubMed ID: 15617268 [TBL] [Abstract][Full Text] [Related]
30. A new boronic acid fluorescent sensor based on fluorene for monosaccharides at physiological pH. Hosseinzadeh R; Mohadjerani M; Pooryousef M; Eslami A; Emami S Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jun; 144():53-60. PubMed ID: 25748592 [TBL] [Abstract][Full Text] [Related]
31. Non-enzymatic detection of serum glucose using a fluorescent nanopolymer probe. Qiao J; Liu Q; Wu H; Cai H; Qi L Mikrochim Acta; 2019 May; 186(6):366. PubMed ID: 31114937 [TBL] [Abstract][Full Text] [Related]
32. A potentiometric non-enzymatic glucose sensor using a molecularly imprinted layer bonded on a conducting polymer. Kim DM; Moon JM; Lee WC; Yoon JH; Choi CS; Shim YB Biosens Bioelectron; 2017 May; 91():276-283. PubMed ID: 28024285 [TBL] [Abstract][Full Text] [Related]
34. A new class of fluorescent boronic acids that have extraordinarily high affinities for diols in aqueous solution at physiological pH. Cheng Y; Ni N; Yang W; Wang B Chemistry; 2010 Dec; 16(45):13528-38. PubMed ID: 20938931 [TBL] [Abstract][Full Text] [Related]
36. A novel fluorescent vesicular sensor for saccharides based on boronic acid-diol interaction. Zhang Y; He Z; Li G Talanta; 2010 Apr; 81(1-2):591-6. PubMed ID: 20188967 [TBL] [Abstract][Full Text] [Related]
37. Near-Infrared Optical Nanosensors for Continuous Detection of Glucose. Le LV; Chendke GS; Gamsey S; Wisniewski N; Desai TA J Diabetes Sci Technol; 2020 Mar; 14(2):204-211. PubMed ID: 31709808 [TBL] [Abstract][Full Text] [Related]
38. Regulating the fluorescence intensity of an anthracene boronic acid system: a B-N bond or a hydrolysis mechanism? Ni W; Kaur G; Springsteen G; Wang B; Franzen S Bioorg Chem; 2004 Dec; 32(6):571-81. PubMed ID: 15530997 [TBL] [Abstract][Full Text] [Related]
39. Evidence for a cross-linking mechanism underlying glucose-induced contraction of phenylboronate hydrogel. Pan X; Yang X; Lowe CR J Mol Recognit; 2008; 21(4):205-9. PubMed ID: 18442190 [TBL] [Abstract][Full Text] [Related]