These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 15617280)

  • 1. Raman lidar observations of cloud liquid water.
    Rizi V; Iarlori M; Rocci G; Visconti G
    Appl Opt; 2004 Dec; 43(35):6440-53. PubMed ID: 15617280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual-field-of-view Raman lidar measurements for the retrieval of cloud microphysical properties.
    Schmidt J; Wandinger U; Malinka A
    Appl Opt; 2013 Apr; 52(11):2235-47. PubMed ID: 23670751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preliminary exploration of atmospheric water vapor, liquid water and ice water by ultraviolet Raman lidar.
    Yufeng W; Qing W; Dengxin H
    Opt Express; 2019 Dec; 27(25):36311-36328. PubMed ID: 31873413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulated polarization diversity lidar returns from water and precipitating mixed phase clouds.
    Sassen K; Zhao H; Dodd GC
    Appl Opt; 1992 May; 31(15):2914-23. PubMed ID: 20725225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retrieval of water cloud properties from carbon dioxide lidar soundings.
    Piatt CM; Takashima T
    Appl Opt; 1987 Apr; 26(7):1257-63. PubMed ID: 20454313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mobile multi-wavelength polarization Raman lidar for water vapor, cloud and aerosol measurement.
    Wu S; Song X; Liu B; Dai G; Liu J; Zhang K; Qin S; Hua D; Gao F; Liu L
    Opt Express; 2015 Dec; 23(26):33870-92. PubMed ID: 26832047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of cloud microphysical properties by laser backscattering and extinction measurements.
    Dubinsky RH; Carswell AI; Pal SR
    Appl Opt; 1985 Jun; 24(11):1614-22. PubMed ID: 18223765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Active Raman sounding of the earth's water vapor field.
    Tratt DM; Whiteman DN; Demoz BB; Farley RW; Wessel JE
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Aug; 61(10):2335-41. PubMed ID: 16029854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retrieving the microphysical properties of opaque liquid water clouds from CALIOP measurements.
    Zhang Y; Zhao C; Zhang K; Ke J; Che H; Shen X; Zheng Z; Liu D
    Opt Express; 2019 Nov; 27(23):34126-34140. PubMed ID: 31878468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ice clouds and Asian dust studied with lidar measurements of particle extinction-to-backscatter ratio, particle depolarization, and water-vapor mixing ratio over Tsukuba.
    Sakai T; Nagai T; Nakazato M; Mano Y; Matsumura T
    Appl Opt; 2003 Dec; 42(36):7103-16. PubMed ID: 14717284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Error analysis of Raman differential absorption lidar ozone measurements in ice clouds.
    Reichardt J
    Appl Opt; 2000 Nov; 39(33):6058-71. PubMed ID: 18354611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Depolarization ratio and attenuated backscatter for nine cloud types: analyses based on collocated CALIPSO lidar and MODIS measurements.
    Cho HM; Yang P; Kattawar GW; Nasiri SL; Hu Y; Minnis P; Trepte C; Winker D
    Opt Express; 2008 Mar; 16(6):3931-48. PubMed ID: 18542490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Upper tropospheric temperature measurements with the use of a Raman lidar.
    Evans KD; Melfi SH; Ferrare RA; Whiteman DN
    Appl Opt; 1997 Apr; 36(12):2594-602. PubMed ID: 18253249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple-scattering lidar retrieval method: tests on Monte Carlo simulations and comparisons with in situ measurements.
    Bissonnette LR; Roy G; Poutier L; Cober SG; Isaac GA
    Appl Opt; 2002 Oct; 41(30):6307-24. PubMed ID: 12396180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RAMSES: German Meteorological Service autonomous Raman lidar for water vapor, temperature, aerosol, and cloud measurements.
    Reichardt J; Wandinger U; Klein V; Mattis I; Hilber B; Begbie R
    Appl Opt; 2012 Dec; 51(34):8111-31. PubMed ID: 23207381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measuring cloud droplet effective radius and liquid water content using changes in degree of linear polarization along cloud depth.
    Kim D; Lee J
    Opt Lett; 2014 Jun; 39(12):3378-81. PubMed ID: 24978490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar.
    Ansmann A; Wandinger U; Riebesell M; Weitkamp C; Michaelis W
    Appl Opt; 1992 Nov; 31(33):7113. PubMed ID: 20802574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suggestion for qualitative lidar identification of different types of aerosol using the two-wavelength rotational Raman and elastic lidar.
    Kim D; Cha H
    Opt Lett; 2006 Oct; 31(19):2915-7. PubMed ID: 16969421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retrieval of aerosol extinction-to-backscatter ratios by combining ground-based and space-borne lidar elastic scattering measurements.
    Lu X; Jiang Y; Zhang X; Wang X; Nasti L; Spinelli N
    Opt Express; 2011 Mar; 19 Suppl 2():A72-9. PubMed ID: 21445222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low and optically thin cloud measurements using a Raman-Mie lidar.
    Wu Y; Chaw S; Gross B; Moshary F; Ahmed S
    Appl Opt; 2009 Feb; 48(6):1218-27. PubMed ID: 23567584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.