BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 15617441)

  • 1. Sulphide and oxygen inhibition over the anaerobic digestion of organic matter: influence of microbial immobilization type.
    Celis-García ML; Ramírez F; Revah S; Razo-Flores E; Monroy O
    Environ Technol; 2004 Nov; 25(11):1265-75. PubMed ID: 15617441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anaerobic sulphate-reducing microbial process using UASB reactor for heavy metals decontamination.
    de Lima AC; Gonçalves MM; Granato M; Leite SG
    Environ Technol; 2001 Mar; 22(3):261-70. PubMed ID: 11346283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Co-digestion of primary sewage sludge and industrial wastewater under anaerobic sulphate reducing conditions: enzymatic profiles in a recycling sludge bed reactor.
    Whiteley CG; Enongene G; Pletschke BI; Rose P; Whittington-Jones K
    Water Sci Technol; 2003; 48(4):129-38. PubMed ID: 14531431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-term effects of operating temperature and sulphate addition on the methanogenic community structure of anaerobic hybrid reactors.
    Pender S; Toomey M; Carton M; Eardly D; Patching JW; Colleran E; O'Flaherty V
    Water Res; 2004 Feb; 38(3):619-30. PubMed ID: 14723931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advantages of anaerobic digestion of sludge in microaerobic conditions.
    Jenicek P; Koubova J; Bindzar J; Zabranska J
    Water Sci Technol; 2010; 62(2):427-34. PubMed ID: 20651449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The enzymology of sludge solubilisation utilising sulphate reducing systems: the role of lipases.
    Whiteley CG; Melamane X; Pletschke B; Rose PD
    Water Sci Technol; 2003; 48(8):159-67. PubMed ID: 14682583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The performance of a phase separated granular bed bioreactor treating brewery wastewater.
    Baloch MI; Akunna JC; Collier PJ
    Bioresour Technol; 2007 Jul; 98(9):1849-55. PubMed ID: 16949280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of aluminium and sulphate on anaerobic digestion of sludge from wastewater enhanced primary treatment.
    Cabirol N; Barragán EJ; Durán A; Noyola A
    Water Sci Technol; 2003; 48(6):235-40. PubMed ID: 14640223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cultivation of low-temperature (15 degrees C), anaerobic, wastewater treatment granules.
    O'Reilly J; Chinalia FA; Mahony T; Collins G; Wu J; O'Flaherty V
    Lett Appl Microbiol; 2009 Oct; 49(4):421-6. PubMed ID: 19674296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of oxygen concentration on N-removal in an aerobic granular sludge reactor.
    Mosquera-Corral A; de Kreuk MK; Heijnen JJ; van Loosdrecht MC
    Water Res; 2005 Jul; 39(12):2676-86. PubMed ID: 15978652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Segregation of biomass in cyclic anaerobic/aerobic granular sludge allows the enrichment of anaerobic ammonium oxidizing bacteria at low temperatures.
    Winkler MK; Kleerebezem R; Kuenen JG; Yang J; van Loosdrecht MC
    Environ Sci Technol; 2011 Sep; 45(17):7330-7. PubMed ID: 21744798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of the supplementation with a primary carbon source on the resistance to oxygen exposure of methanogenic sludge.
    Estrada-Vázquez C; Macarie H; Kato MT; Rodríguez-Vázquez R; Esparza-García F; Poggi-Varaldo HM
    Water Sci Technol; 2003; 48(6):119-24. PubMed ID: 14640208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of the liquid upflow velocity on thermophilic sulphate reduction in acidifying granular sludge reactors.
    Lens PN; Korthout D; van Lier JB; Hulshoff Pol LW; Lettinga G
    Environ Technol; 2001 Feb; 22(2):183-93. PubMed ID: 11349377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated anaerobic-aerobic fixed-film reactor for slaughterhouse wastewater treatment.
    Del Pozo R; Diez V
    Water Res; 2005 Mar; 39(6):1114-22. PubMed ID: 15766966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methanogenic activities in anaerobic membrane bioreactors (AnMBR) treating synthetic municipal wastewater.
    Ho J; Sung S
    Bioresour Technol; 2010 Apr; 101(7):2191-6. PubMed ID: 20022745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Treatment of sulphide containing wastewater with sulphur recovery in a novel reverse fluidized loop reactor (RFLR).
    Krishnakumar B; Majumdar S; Manilal VB; Haridas A
    Water Res; 2005 Feb; 39(4):639-47. PubMed ID: 15707637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advanced start-up of anaerobic attached film expanded bed reactor by pre-aeration of biofilm carrier.
    Ye FX; Chen YX; Feng XS
    Bioresour Technol; 2005 Jan; 96(1):115-9. PubMed ID: 15364089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biological nutrient removal in simple dual sludge system with an UMBR (upflow multi-layer bioreactor) and aerobic biofilm reactor.
    Kwon JC; Park HS; An JY; Shim KB; Kim YH; Shin HS
    Water Sci Technol; 2005; 52(10-11):443-51. PubMed ID: 16459820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The SBR and its biofilm application potentials.
    Wilderer PA; McSwain BS
    Water Sci Technol; 2004; 50(10):1-10. PubMed ID: 15656289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.