BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 15618268)

  • 1. Microelectrode array recordings of cultured hippocampal networks reveal a simple model for transcription and protein synthesis-dependent plasticity.
    Arnold FJ; Hofmann F; Bengtson CP; Wittmann M; Vanhoutte P; Bading H
    J Physiol; 2005 Apr; 564(Pt 1):3-19. PubMed ID: 15618268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A transcription-dependent increase in miniature EPSC frequency accompanies late-phase plasticity in cultured hippocampal neurons.
    Wiegert JS; Hofmann F; Bading H; Bengtson CP
    BMC Neurosci; 2009 Sep; 10():124. PubMed ID: 19788723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spontaneous recurrent network activity in organotypic rat hippocampal slices.
    Mohajerani MH; Cherubini E
    Eur J Neurosci; 2005 Jul; 22(1):107-18. PubMed ID: 16029200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasticity of synaptic GluN receptors is required for the Src-dependent induction of long-term potentiation at CA3-CA1 synapses.
    Li HB; Jackson MF; Yang K; Trepanier C; Salter MW; Orser BA; Macdonald JF
    Hippocampus; 2011 Oct; 21(10):1053-61. PubMed ID: 20865743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reciprocal interactions between CA3 network activity and strength of recurrent collateral synapses.
    Bains JS; Longacher JM; Staley KJ
    Nat Neurosci; 1999 Aug; 2(8):720-6. PubMed ID: 10412061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TH-9 (a theophylline derivative) induces long-lasting enhancement in excitatory synaptic transmission in the rat hippocampus that is occluded by frequency-dependent plasticity in vitro.
    Nashawi H; Bartl T; Bartl P; Novotny L; Oriowo MA; Kombian SB
    Neuroscience; 2012 Sep; 220():70-84. PubMed ID: 22728090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bidirectional synaptic plasticity induced by conditioned stimulations with different number of pulse at hippocampal CA1 synapses: roles of N-methyl-D-aspartate and metabotropic glutamate receptors.
    Hsu JC; Cheng SJ; Yang HW; Wang HJ; Chiu TH; Min MY; Lin YW
    Synapse; 2011 Aug; 65(8):795-803. PubMed ID: 21218453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pyrethroid modulation of spontaneous neuronal excitability and neurotransmission in hippocampal neurons in culture.
    Meyer DA; Carter JM; Johnstone AF; Shafer TJ
    Neurotoxicology; 2008 Mar; 29(2):213-25. PubMed ID: 18243323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term oestradiol treatment enhances hippocampal synaptic plasticity that is dependent on muscarinic acetylcholine receptors in ovariectomised female rats.
    Stelly CE; Cronin J; Daniel JM; Schrader LA
    J Neuroendocrinol; 2012 Jun; 24(6):887-96. PubMed ID: 22313316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Requirement of a critical period of GABAergic receptor blockade for induction of a cAMP-mediated long-term depression at CA3-CA1 synapses.
    Yu TP; Lester HA; Davidson N
    Synapse; 2003 Jul; 49(1):12-9. PubMed ID: 12710011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impaired synaptic plasticity in a rat model of tuberous sclerosis.
    von der Brelie C; Waltereit R; Zhang L; Beck H; Kirschstein T
    Eur J Neurosci; 2006 Feb; 23(3):686-92. PubMed ID: 16487150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spike-timing-dependent plasticity of inhibitory synapses in the entorhinal cortex.
    Haas JS; Nowotny T; Abarbanel HD
    J Neurophysiol; 2006 Dec; 96(6):3305-13. PubMed ID: 16928795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Network stability through homeostatic scaling of excitatory and inhibitory synapses following inactivity in CA3 of rat organotypic hippocampal slice cultures.
    Buckby LE; Jensen TP; Smith PJ; Empson RM
    Mol Cell Neurosci; 2006 Apr; 31(4):805-16. PubMed ID: 16500111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exposure to interferon-gamma during synaptogenesis increases inhibitory activity after a latent period in cultured rat hippocampal neurons.
    Brask J; Kristensson K; Hill RH
    Eur J Neurosci; 2004 Jun; 19(12):3193-201. PubMed ID: 15217375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glucocorticoid receptor activation selectively hampers N-methyl-D-aspartate receptor dependent hippocampal synaptic plasticity in vitro.
    Wiegert O; Pu Z; Shor S; Joƫls M; Krugers H
    Neuroscience; 2005; 135(2):403-11. PubMed ID: 16125856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cortical injury affects short-term plasticity of evoked excitatory synaptic currents.
    Li H; Bandrowski AE; Prince DA
    J Neurophysiol; 2005 Jan; 93(1):146-56. PubMed ID: 15342719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GABAB receptor- and metabotropic glutamate receptor-dependent cooperative long-term potentiation of rat hippocampal GABAA synaptic transmission.
    Patenaude C; Chapman CA; Bertrand S; Congar P; Lacaille JC
    J Physiol; 2003 Nov; 553(Pt 1):155-67. PubMed ID: 12963794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induction mechanisms and modulation of bidirectional burst stimulation-induced synaptic plasticity in the hippocampus.
    Clark K; Normann C
    Eur J Neurosci; 2008 Jul; 28(2):279-87. PubMed ID: 18702699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The relation between spike-timing dependent plasticity and Ca2+ dynamics in the hippocampal CA1 network.
    Aihara T; Abiru Y; Yamazaki Y; Watanabe H; Fukushima Y; Tsukada M
    Neuroscience; 2007 Mar; 145(1):80-7. PubMed ID: 17223275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid redistribution of glutamate receptors contributes to long-term depression in hippocampal cultures.
    Carroll RC; Lissin DV; von Zastrow M; Nicoll RA; Malenka RC
    Nat Neurosci; 1999 May; 2(5):454-60. PubMed ID: 10321250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.