These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 15618406)
1. The splicing of yeast mitochondrial group I and group II introns requires a DEAD-box protein with RNA chaperone function. Huang HR; Rowe CE; Mohr S; Jiang Y; Lambowitz AM; Perlman PS Proc Natl Acad Sci U S A; 2005 Jan; 102(1):163-8. PubMed ID: 15618406 [TBL] [Abstract][Full Text] [Related]
2. Involvement of DEAD-box proteins in group I and group II intron splicing. Biochemical characterization of Mss116p, ATP hydrolysis-dependent and -independent mechanisms, and general RNA chaperone activity. Halls C; Mohr S; Del Campo M; Yang Q; Jankowsky E; Lambowitz AM J Mol Biol; 2007 Jan; 365(3):835-55. PubMed ID: 17081564 [TBL] [Abstract][Full Text] [Related]
3. Unwinding by local strand separation is critical for the function of DEAD-box proteins as RNA chaperones. Del Campo M; Mohr S; Jiang Y; Jia H; Jankowsky E; Lambowitz AM J Mol Biol; 2009 Jun; 389(4):674-93. PubMed ID: 19393667 [TBL] [Abstract][Full Text] [Related]
4. ATP-dependent roles of the DEAD-box protein Mss116p in group II intron splicing in vitro and in vivo. Potratz JP; Del Campo M; Wolf RZ; Lambowitz AM; Russell R J Mol Biol; 2011 Aug; 411(3):661-79. PubMed ID: 21679717 [TBL] [Abstract][Full Text] [Related]
5. Function of the C-terminal domain of the DEAD-box protein Mss116p analyzed in vivo and in vitro. Mohr G; Del Campo M; Mohr S; Yang Q; Jia H; Jankowsky E; Lambowitz AM J Mol Biol; 2008 Feb; 375(5):1344-64. PubMed ID: 18096186 [TBL] [Abstract][Full Text] [Related]
6. A DEAD-box protein alone promotes group II intron splicing and reverse splicing by acting as an RNA chaperone. Mohr S; Matsuura M; Perlman PS; Lambowitz AM Proc Natl Acad Sci U S A; 2006 Mar; 103(10):3569-74. PubMed ID: 16505350 [TBL] [Abstract][Full Text] [Related]
7. Do DEAD-box proteins promote group II intron splicing without unwinding RNA? Del Campo M; Tijerina P; Bhaskaran H; Mohr S; Yang Q; Jankowsky E; Russell R; Lambowitz AM Mol Cell; 2007 Oct; 28(1):159-66. PubMed ID: 17936712 [TBL] [Abstract][Full Text] [Related]
8. A DExH/D-box protein coordinates the two steps of splicing in a group I intron. Bifano AL; Caprara MG J Mol Biol; 2008 Nov; 383(3):667-82. PubMed ID: 18789947 [TBL] [Abstract][Full Text] [Related]
9. Splicing of yeast aI5beta group I intron requires SUV3 to recycle MRS1 via mitochondrial degradosome-promoted decay of excised intron ribonucleoprotein (RNP). Turk EM; Caprara MG J Biol Chem; 2010 Mar; 285(12):8585-94. PubMed ID: 20064926 [TBL] [Abstract][Full Text] [Related]
10. A novel mitochondrial DEAD box protein (Mrh4) required for maintenance of mtDNA in Saccharomyces cerevisiae. Schmidt U; Lehmann K; Stahl U FEMS Yeast Res; 2002 Aug; 2(3):267-76. PubMed ID: 12702275 [TBL] [Abstract][Full Text] [Related]
11. High-throughput genetic identification of functionally important regions of the yeast DEAD-box protein Mss116p. Mohr G; Del Campo M; Turner KG; Gilman B; Wolf RZ; Lambowitz AM J Mol Biol; 2011 Nov; 413(5):952-72. PubMed ID: 21945532 [TBL] [Abstract][Full Text] [Related]
12. Structure-guided mutational analysis of a yeast DEAD-box protein involved in mitochondrial RNA splicing. Bifano AL; Turk EM; Caprara MG J Mol Biol; 2010 May; 398(3):429-43. PubMed ID: 20307546 [TBL] [Abstract][Full Text] [Related]
13. Overexpression of DEAD box protein pMSS116 promotes ATP-dependent splicing of a yeast group II intron in vitro. Niemer I; Schmelzer C; Börner GV Nucleic Acids Res; 1995 Sep; 23(17):2966-72. PubMed ID: 7567443 [TBL] [Abstract][Full Text] [Related]
14. Overexpression of DEAD box protein pMSS116 promotes ATP-dependent splicing of a yeast group II intron in vitro. Niemer I; Schmelzer C; Börner GV Nucleic Acids Res; 1995 Aug; 23(15):2966-72. PubMed ID: 7659519 [TBL] [Abstract][Full Text] [Related]
15. The Neurospora crassa CYT-18 protein C-terminal RNA-binding domain helps stabilize interdomain tertiary interactions in group I introns. Chen X; Mohr G; Lambowitz AM RNA; 2004 Apr; 10(4):634-44. PubMed ID: 15037773 [TBL] [Abstract][Full Text] [Related]
16. Genome-wide analysis of pre-mRNA splicing: intron features govern the requirement for the second-step factor, Prp17 in Saccharomyces cerevisiae and Schizosaccharomyces pombe. Sapra AK; Arava Y; Khandelia P; Vijayraghavan U J Biol Chem; 2004 Dec; 279(50):52437-46. PubMed ID: 15452114 [TBL] [Abstract][Full Text] [Related]
17. The DIVa maturase binding site in the yeast group II intron aI2 is essential for intron homing but not for in vivo splicing. Huang HR; Chao MY; Armstrong B; Wang Y; Lambowitz AM; Perlman PS Mol Cell Biol; 2003 Dec; 23(23):8809-19. PubMed ID: 14612420 [TBL] [Abstract][Full Text] [Related]
18. The Azoarcus group I intron ribozyme misfolds and is accelerated for refolding by ATP-dependent RNA chaperone proteins. Sinan S; Yuan X; Russell R J Biol Chem; 2011 Oct; 286(43):37304-12. PubMed ID: 21878649 [TBL] [Abstract][Full Text] [Related]
19. A DEAD protein that activates intron self-splicing without unwinding RNA. Solem A; Zingler N; Pyle AM Mol Cell; 2006 Nov; 24(4):611-7. PubMed ID: 17188036 [TBL] [Abstract][Full Text] [Related]
20. Mss116p: a DEAD-box protein facilitates RNA folding. Sachsenmaier N; Waldsich C RNA Biol; 2013 Jan; 10(1):71-82. PubMed ID: 23064153 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]