These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 15618613)
1. Isolation and structural elucidation of 4-(beta-D-glucopyranosyldisulfanyl)butyl glucosinolate from leaves of rocket salad (Eruca sativa L.) and its antioxidative activity. Kim SJ; Jin S; Ishii G Biosci Biotechnol Biochem; 2004 Dec; 68(12):2444-50. PubMed ID: 15618613 [TBL] [Abstract][Full Text] [Related]
2. Structural elucidation of 4-(cystein-S-yl)butyl glucosinolate from the leaves of Eruca sativa. Kim SJ; Kawaharada C; Jin S; Hashimoto M; Ishii G; Yamauchi H Biosci Biotechnol Biochem; 2007 Jan; 71(1):114-21. PubMed ID: 17213676 [TBL] [Abstract][Full Text] [Related]
3. Naturally occurring glucosinolates in plant extracts of rocket salad (Eruca sativa L.) identified by liquid chromatography coupled with negative ion electrospray ionization and quadrupole ion-trap mass spectrometry. Cataldi TR; Rubino A; Lelario F; Bufo SA Rapid Commun Mass Spectrom; 2007; 21(14):2374-88. PubMed ID: 17590871 [TBL] [Abstract][Full Text] [Related]
4. Identification of the major glucosinolate (4-mercaptobutyl glucosinolate) in leaves of Eruca sativa L. (salad rocket). Bennett RN; Mellon FA; Botting NP; Eagles J; Rosa EA; Williamson G Phytochemistry; 2002 Sep; 61(1):25-30. PubMed ID: 12165298 [TBL] [Abstract][Full Text] [Related]
5. Collision-induced dissociation of the A + 2 isotope ion facilitates glucosinolates structure elucidation by electrospray ionization-tandem mass spectrometry with a linear quadrupole ion trap. Cataldi TR; Lelario F; Orlando D; Bufo SA Anal Chem; 2010 Jul; 82(13):5686-96. PubMed ID: 20521824 [TBL] [Abstract][Full Text] [Related]
6. Glucosinolate structures in evolution. Agerbirk N; Olsen CE Phytochemistry; 2012 May; 77():16-45. PubMed ID: 22405332 [TBL] [Abstract][Full Text] [Related]
7. Leaf Metabolic, Genetic, and Morphophysiological Profiles of Cultivated and Wild Rocket Salad (Eruca and Diplotaxis Spp.). Taranto F; Francese G; Di Dato F; D'Alessandro A; Greco B; Onofaro Sanajà V; Pentangelo A; Mennella G; Tripodi P J Agric Food Chem; 2016 Jul; 64(29):5824-36. PubMed ID: 27357913 [TBL] [Abstract][Full Text] [Related]
8. Ontogenic profiling of glucosinolates, flavonoids, and other secondary metabolites in Eruca sativa (salad rocket), Diplotaxis erucoides (wall rocket), Diplotaxis tenuifolia (wild rocket), and Bunias orientalis (Turkish rocket). Bennett RN; Rosa EA; Mellon FA; Kroon PA J Agric Food Chem; 2006 May; 54(11):4005-15. PubMed ID: 16719527 [TBL] [Abstract][Full Text] [Related]
9. Identification and quantification of glucosinolates in sprouts derived from seeds of wild Eruca sativa L. (salad rocket) and Diplotaxis tenuifolia L. (wild rocket) from diverse geographical locations. Bennett RN; Carvalho R; Mellon FA; Eagles J; Rosa EA J Agric Food Chem; 2007 Jan; 55(1):67-74. PubMed ID: 17199315 [TBL] [Abstract][Full Text] [Related]
10. Variations in the most abundant types of glucosinolates found in the leaves of baby leaf rocket under typical commercial conditions. Hall MK; Jobling JJ; Rogers GS J Sci Food Agric; 2015 Feb; 95(3):552-9. PubMed ID: 24912775 [TBL] [Abstract][Full Text] [Related]
11. Investigation of the glucosinolates in Hesperis matronalis L. and Hesperis laciniata All.: Unveiling 4'-O-β-d-apiofuranosylglucomatronalin. Montaut S; Read S; Blažević I; Nuzillard JM; Roje M; Harakat D; Rollin P Carbohydr Res; 2020 Feb; 488():107898. PubMed ID: 31918339 [TBL] [Abstract][Full Text] [Related]
12. Identification and quantification of glucosinolate and flavonol compounds in rocket salad (Eruca sativa, Eruca vesicaria and Diplotaxis tenuifolia) by LC-MS: highlighting the potential for improving nutritional value of rocket crops. Bell L; Oruna-Concha MJ; Wagstaff C Food Chem; 2015 Apr; 172():852-61. PubMed ID: 25442630 [TBL] [Abstract][Full Text] [Related]
13. Establishing the occurrence of major and minor glucosinolates in Brassicaceae by LC-ESI-hybrid linear ion-trap and Fourier-transform ion cyclotron resonance mass spectrometry. Lelario F; Bianco G; Bufo SA; Cataldi TR Phytochemistry; 2012 Jan; 73(1):74-83. PubMed ID: 22030302 [TBL] [Abstract][Full Text] [Related]
14. The major glucosinolate hydrolysis product in rocket (Eruca sativa L.), sativin, is 1,3-thiazepane-2-thione: Elucidation of structure, bioactivity, and stability compared to other rocket isothiocyanates. Fechner J; Kaufmann M; Herz C; Eisenschmidt D; Lamy E; Kroh LW; Hanschen FS Food Chem; 2018 Sep; 261():57-65. PubMed ID: 29739606 [TBL] [Abstract][Full Text] [Related]
15. Combined effect of Nitrogen, Phosphorus and Potassium fertilizers on the contents of glucosinolates in rocket salad ( Chun JH; Kim S; Arasu MV; Al-Dhabi NA; Chung DY; Kim SJ Saudi J Biol Sci; 2017 Feb; 24(2):436-443. PubMed ID: 28149184 [TBL] [Abstract][Full Text] [Related]
16. Selenium Biofortification Effect on Glucosinolate Content of Đulović A; Usanović K; Kukoč Modun L; Blažević I Molecules; 2023 Oct; 28(20):. PubMed ID: 37894683 [TBL] [Abstract][Full Text] [Related]
17. A comparative study of flavonoid compounds, vitamin C, and antioxidant properties of baby leaf Brassicaceae species. Martínez-Sánchez A; Gil-Izquierdo A; Gil MI; Ferreres F J Agric Food Chem; 2008 Apr; 56(7):2330-40. PubMed ID: 18321050 [TBL] [Abstract][Full Text] [Related]